| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme25cv | Structured version Visualization version Unicode version | ||
| Description: Change bound variables in cdleme25c 35643. (Contributed by NM, 2-Feb-2013.) |
| Ref | Expression |
|---|---|
| cdleme25cv.f |
|
| cdleme25cv.n |
|
| cdleme25cv.g |
|
| cdleme25cv.o |
|
| cdleme25cv.i |
|
| cdleme25cv.e |
|
| Ref | Expression |
|---|---|
| cdleme25cv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq1 4656 |
. . . . . . . . 9
| |
| 2 | 1 | notbid 308 |
. . . . . . . 8
|
| 3 | breq1 4656 |
. . . . . . . . 9
| |
| 4 | 3 | notbid 308 |
. . . . . . . 8
|
| 5 | 2, 4 | anbi12d 747 |
. . . . . . 7
|
| 6 | oveq1 6657 |
. . . . . . . . . . 11
| |
| 7 | oveq2 6658 |
. . . . . . . . . . . . 13
| |
| 8 | 7 | oveq1d 6665 |
. . . . . . . . . . . 12
|
| 9 | 8 | oveq2d 6666 |
. . . . . . . . . . 11
|
| 10 | 6, 9 | oveq12d 6668 |
. . . . . . . . . 10
|
| 11 | oveq2 6658 |
. . . . . . . . . . 11
| |
| 12 | 11 | oveq1d 6665 |
. . . . . . . . . 10
|
| 13 | 10, 12 | oveq12d 6668 |
. . . . . . . . 9
|
| 14 | 13 | oveq2d 6666 |
. . . . . . . 8
|
| 15 | 14 | eqeq2d 2632 |
. . . . . . 7
|
| 16 | 5, 15 | imbi12d 334 |
. . . . . 6
|
| 17 | 16 | cbvralv 3171 |
. . . . 5
|
| 18 | cdleme25cv.n |
. . . . . . . . 9
| |
| 19 | cdleme25cv.f |
. . . . . . . . . . 11
| |
| 20 | 19 | oveq1i 6660 |
. . . . . . . . . 10
|
| 21 | 20 | oveq2i 6661 |
. . . . . . . . 9
|
| 22 | 18, 21 | eqtri 2644 |
. . . . . . . 8
|
| 23 | 22 | eqeq2i 2634 |
. . . . . . 7
|
| 24 | 23 | imbi2i 326 |
. . . . . 6
|
| 25 | 24 | ralbii 2980 |
. . . . 5
|
| 26 | cdleme25cv.o |
. . . . . . . . 9
| |
| 27 | cdleme25cv.g |
. . . . . . . . . . 11
| |
| 28 | 27 | oveq1i 6660 |
. . . . . . . . . 10
|
| 29 | 28 | oveq2i 6661 |
. . . . . . . . 9
|
| 30 | 26, 29 | eqtri 2644 |
. . . . . . . 8
|
| 31 | 30 | eqeq2i 2634 |
. . . . . . 7
|
| 32 | 31 | imbi2i 326 |
. . . . . 6
|
| 33 | 32 | ralbii 2980 |
. . . . 5
|
| 34 | 17, 25, 33 | 3bitr4i 292 |
. . . 4
|
| 35 | 34 | a1i 11 |
. . 3
|
| 36 | 35 | riotabiia 6628 |
. 2
|
| 37 | cdleme25cv.i |
. 2
| |
| 38 | cdleme25cv.e |
. 2
| |
| 39 | 36, 37, 38 | 3eqtr4i 2654 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-riota 6611 df-ov 6653 |
| This theorem is referenced by: cdleme27a 35655 |
| Copyright terms: Public domain | W3C validator |