Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme31fv Structured version   Visualization version   Unicode version

Theorem cdleme31fv 35678
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 10-Feb-2013.)
Hypotheses
Ref Expression
cdleme31.o  |-  O  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )
cdleme31.f  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  O ,  x ) )
cdleme31.c  |-  C  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( X  ./\  W ) )  =  X )  ->  z  =  ( N  .\/  ( X 
./\  W ) ) ) )
Assertion
Ref Expression
cdleme31fv  |-  ( X  e.  B  ->  ( F `  X )  =  if ( ( P  =/=  Q  /\  -.  X  .<_  W ) ,  C ,  X ) )
Distinct variable groups:    x, B    x, C    x,  .<_    x, P    x, Q    x, W    x, s, z, X
Allowed substitution hints:    A( x, z, s)    B( z, s)    C( z, s)    P( z, s)    Q( z, s)    F( x, z, s)    .\/ ( x, z, s)    .<_ ( z, s)    ./\ ( x, z, s)    N( x, z, s)    O( x, z, s)    W( z, s)

Proof of Theorem cdleme31fv
StepHypRef Expression
1 cdleme31.c . . . 4  |-  C  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( X  ./\  W ) )  =  X )  ->  z  =  ( N  .\/  ( X 
./\  W ) ) ) )
2 riotaex 6615 . . . 4  |-  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X )  -> 
z  =  ( N 
.\/  ( X  ./\  W ) ) ) )  e.  _V
31, 2eqeltri 2697 . . 3  |-  C  e. 
_V
4 ifexg 4157 . . 3  |-  ( ( C  e.  _V  /\  X  e.  B )  ->  if ( ( P  =/=  Q  /\  -.  X  .<_  W ) ,  C ,  X )  e.  _V )
53, 4mpan 706 . 2  |-  ( X  e.  B  ->  if ( ( P  =/= 
Q  /\  -.  X  .<_  W ) ,  C ,  X )  e.  _V )
6 breq1 4656 . . . . . 6  |-  ( x  =  X  ->  (
x  .<_  W  <->  X  .<_  W ) )
76notbid 308 . . . . 5  |-  ( x  =  X  ->  ( -.  x  .<_  W  <->  -.  X  .<_  W ) )
87anbi2d 740 . . . 4  |-  ( x  =  X  ->  (
( P  =/=  Q  /\  -.  x  .<_  W )  <-> 
( P  =/=  Q  /\  -.  X  .<_  W ) ) )
9 oveq1 6657 . . . . . . . . . . 11  |-  ( x  =  X  ->  (
x  ./\  W )  =  ( X  ./\  W ) )
109oveq2d 6666 . . . . . . . . . 10  |-  ( x  =  X  ->  (
s  .\/  ( x  ./\ 
W ) )  =  ( s  .\/  ( X  ./\  W ) ) )
11 id 22 . . . . . . . . . 10  |-  ( x  =  X  ->  x  =  X )
1210, 11eqeq12d 2637 . . . . . . . . 9  |-  ( x  =  X  ->  (
( s  .\/  (
x  ./\  W )
)  =  x  <->  ( s  .\/  ( X  ./\  W
) )  =  X ) )
1312anbi2d 740 . . . . . . . 8  |-  ( x  =  X  ->  (
( -.  s  .<_  W  /\  ( s  .\/  ( x  ./\  W ) )  =  x )  <-> 
( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X ) ) )
149oveq2d 6666 . . . . . . . . 9  |-  ( x  =  X  ->  ( N  .\/  ( x  ./\  W ) )  =  ( N  .\/  ( X 
./\  W ) ) )
1514eqeq2d 2632 . . . . . . . 8  |-  ( x  =  X  ->  (
z  =  ( N 
.\/  ( x  ./\  W ) )  <->  z  =  ( N  .\/  ( X 
./\  W ) ) ) )
1613, 15imbi12d 334 . . . . . . 7  |-  ( x  =  X  ->  (
( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) )  <->  ( ( -.  s  .<_  W  /\  ( s  .\/  ( X  ./\  W ) )  =  X )  -> 
z  =  ( N 
.\/  ( X  ./\  W ) ) ) ) )
1716ralbidv 2986 . . . . . 6  |-  ( x  =  X  ->  ( A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) )  <->  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( X  ./\  W ) )  =  X )  ->  z  =  ( N  .\/  ( X 
./\  W ) ) ) ) )
1817riotabidv 6613 . . . . 5  |-  ( x  =  X  ->  ( iota_ z  e.  B  A. s  e.  A  (
( -.  s  .<_  W  /\  ( s  .\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )  =  (
iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( X  ./\  W ) )  =  X )  ->  z  =  ( N  .\/  ( X 
./\  W ) ) ) ) )
19 cdleme31.o . . . . 5  |-  O  =  ( iota_ z  e.  B  A. s  e.  A  ( ( -.  s  .<_  W  /\  ( s 
.\/  ( x  ./\  W ) )  =  x )  ->  z  =  ( N  .\/  ( x 
./\  W ) ) ) )
2018, 19, 13eqtr4g 2681 . . . 4  |-  ( x  =  X  ->  O  =  C )
218, 20, 11ifbieq12d 4113 . . 3  |-  ( x  =  X  ->  if ( ( P  =/= 
Q  /\  -.  x  .<_  W ) ,  O ,  x )  =  if ( ( P  =/= 
Q  /\  -.  X  .<_  W ) ,  C ,  X ) )
22 cdleme31.f . . 3  |-  F  =  ( x  e.  B  |->  if ( ( P  =/=  Q  /\  -.  x  .<_  W ) ,  O ,  x ) )
2321, 22fvmptg 6280 . 2  |-  ( ( X  e.  B  /\  if ( ( P  =/= 
Q  /\  -.  X  .<_  W ) ,  C ,  X )  e.  _V )  ->  ( F `  X )  =  if ( ( P  =/= 
Q  /\  -.  X  .<_  W ) ,  C ,  X ) )
245, 23mpdan 702 1  |-  ( X  e.  B  ->  ( F `  X )  =  if ( ( P  =/=  Q  /\  -.  X  .<_  W ) ,  C ,  X ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   _Vcvv 3200   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888   iota_crio 6610  (class class class)co 6650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-riota 6611  df-ov 6653
This theorem is referenced by:  cdleme31fv1  35679
  Copyright terms: Public domain W3C validator