| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ceqsalg | Structured version Visualization version Unicode version | ||
| Description: A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. For an alternate proof, see ceqsalgALT 3231. (Contributed by NM, 29-Oct-2003.) (Proof shortened by BJ, 29-Sep-2019.) |
| Ref | Expression |
|---|---|
| ceqsalg.1 |
|
| ceqsalg.2 |
|
| Ref | Expression |
|---|---|
| ceqsalg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqsalg.1 |
. 2
| |
| 2 | ceqsalg.2 |
. . 3
| |
| 3 | 2 | ax-gen 1722 |
. 2
|
| 4 | ceqsalt 3228 |
. 2
| |
| 5 | 1, 3, 4 | mp3an12 1414 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-12 2047 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-v 3202 |
| This theorem is referenced by: ceqsal 3232 uniiunlem 3691 ralrnmpt2 6775 fimaxre3 10970 pmapglbx 35055 |
| Copyright terms: Public domain | W3C validator |