| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrnmpt2 | Structured version Visualization version Unicode version | ||
| Description: A restricted quantifier over an image set. (Contributed by Mario Carneiro, 1-Sep-2015.) |
| Ref | Expression |
|---|---|
| rngop.1 |
|
| ralrnmpt2.2 |
|
| Ref | Expression |
|---|---|
| ralrnmpt2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngop.1 |
. . . . 5
| |
| 2 | 1 | rnmpt2 6770 |
. . . 4
|
| 3 | 2 | raleqi 3142 |
. . 3
|
| 4 | eqeq1 2626 |
. . . . 5
| |
| 5 | 4 | 2rexbidv 3057 |
. . . 4
|
| 6 | 5 | ralab 3367 |
. . 3
|
| 7 | ralcom4 3224 |
. . . 4
| |
| 8 | r19.23v 3023 |
. . . . 5
| |
| 9 | 8 | albii 1747 |
. . . 4
|
| 10 | 7, 9 | bitr2i 265 |
. . 3
|
| 11 | 3, 6, 10 | 3bitri 286 |
. 2
|
| 12 | ralcom4 3224 |
. . . . . 6
| |
| 13 | r19.23v 3023 |
. . . . . . 7
| |
| 14 | 13 | albii 1747 |
. . . . . 6
|
| 15 | 12, 14 | bitri 264 |
. . . . 5
|
| 16 | nfv 1843 |
. . . . . . . 8
| |
| 17 | ralrnmpt2.2 |
. . . . . . . 8
| |
| 18 | 16, 17 | ceqsalg 3230 |
. . . . . . 7
|
| 19 | 18 | ralimi 2952 |
. . . . . 6
|
| 20 | ralbi 3068 |
. . . . . 6
| |
| 21 | 19, 20 | syl 17 |
. . . . 5
|
| 22 | 15, 21 | syl5bbr 274 |
. . . 4
|
| 23 | 22 | ralimi 2952 |
. . 3
|
| 24 | ralbi 3068 |
. . 3
| |
| 25 | 23, 24 | syl 17 |
. 2
|
| 26 | 11, 25 | syl5bb 272 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-cnv 5122 df-dm 5124 df-rn 5125 df-oprab 6654 df-mpt2 6655 |
| This theorem is referenced by: rexrnmpt2 6776 efgval2 18137 txcnp 21423 txcnmpt 21427 txflf 21810 |
| Copyright terms: Public domain | W3C validator |