Proof of Theorem clwlksf1clwwlklem
Step | Hyp | Ref
| Expression |
1 | | clwlksfclwwlk.1 |
. . . . . . . . . . . 12
     |
2 | | clwlksfclwwlk.2 |
. . . . . . . . . . . 12
     |
3 | | clwlksfclwwlk.c |
. . . . . . . . . . . 12
 ClWalks        |
4 | | clwlksfclwwlk.f |
. . . . . . . . . . . 12
  substr           |
5 | 1, 2, 3, 4 | clwlksf1clwwlklem3 26967 |
. . . . . . . . . . 11
     Word Vtx    |
6 | 1, 2, 3, 4 | clwlksf1clwwlklem3 26967 |
. . . . . . . . . . 11
     Word Vtx    |
7 | 5, 6 | anim12ci 591 |
. . . . . . . . . 10
 
      Word
Vtx 
    Word Vtx     |
8 | 7 | adantr 481 |
. . . . . . . . 9
  


     Word Vtx 
    Word Vtx     |
9 | | nnnn0 11299 |
. . . . . . . . . . 11
   |
10 | 9 | adantl 482 |
. . . . . . . . . 10
  


  |
11 | 1, 2, 3, 4 | clwlksf1clwwlklem1 26965 |
. . . . . . . . . . . 12
           |
12 | 11 | adantl 482 |
. . . . . . . . . . 11
 

          |
13 | 12 | adantr 481 |
. . . . . . . . . 10
  


          |
14 | 1, 2, 3, 4 | clwlksf1clwwlklem1 26965 |
. . . . . . . . . . . 12
           |
15 | 14 | adantr 481 |
. . . . . . . . . . 11
 

          |
16 | 15 | adantr 481 |
. . . . . . . . . 10
  


          |
17 | 10, 13, 16 | 3jca 1242 |
. . . . . . . . 9
  



                   |
18 | 8, 17 | jca 554 |
. . . . . . . 8
  


      Word
Vtx 
    Word Vtx   
                    |
19 | 18 | exp31 630 |
. . . . . . 7
 
       Word
Vtx 
    Word Vtx   
                      |
20 | 19 | 3imp31 1257 |
. . . . . 6
 
       Word Vtx      Word Vtx  
                     |
21 | 20 | adantr 481 |
. . . . 5
  
      substr                  substr             
      Word
Vtx 
    Word Vtx   
                    |
22 | 1, 2, 3, 4 | clwlksfclwwlk1hashn 26959 |
. . . . . . . . . 10
           |
23 | 22 | 3ad2ant2 1083 |
. . . . . . . . 9
 
           |
24 | 23 | opeq2d 4409 |
. . . . . . . 8
 
                 |
25 | 24 | oveq2d 6666 |
. . . . . . 7
 
      substr                  substr       |
26 | 1, 2, 3, 4 | clwlksfclwwlk1hashn 26959 |
. . . . . . . . . 10
           |
27 | 26 | 3ad2ant3 1084 |
. . . . . . . . 9
 
           |
28 | 27 | opeq2d 4409 |
. . . . . . . 8
 
                 |
29 | 28 | oveq2d 6666 |
. . . . . . 7
 
      substr                  substr       |
30 | 25, 29 | eqeq12d 2637 |
. . . . . 6
 
       substr            
     substr                  substr          substr        |
31 | 30 | biimpa 501 |
. . . . 5
  
      substr                  substr             
     substr  
       substr       |
32 | | simpl 473 |
. . . . . . 7
       Word
Vtx 
    Word Vtx   
                       Word Vtx      Word Vtx     |
33 | | id 22 |
. . . . . . . . . 10

  |
34 | 33, 33 | jca 554 |
. . . . . . . . 9


   |
35 | 34 | 3ad2ant1 1082 |
. . . . . . . 8
                       |
36 | 35 | adantl 482 |
. . . . . . 7
       Word
Vtx 
    Word Vtx   
                  
   |
37 | | 3simpc 1060 |
. . . . . . . 8
                                       |
38 | 37 | adantl 482 |
. . . . . . 7
       Word
Vtx 
    Word Vtx   
                                      |
39 | | swrdeq 13444 |
. . . . . . 7
       Word
Vtx 
    Word Vtx   
                          substr          substr        ..^                      |
40 | 32, 36, 38, 39 | syl3anc 1326 |
. . . . . 6
       Word
Vtx 
    Word Vtx   
                        substr          substr    

  ..^                      |
41 | | simpr 477 |
. . . . . 6
    ..^                  
  ..^                    |
42 | 40, 41 | syl6bi 243 |
. . . . 5
       Word
Vtx 
    Word Vtx   
                        substr          substr       ..^                     |
43 | 21, 31, 42 | sylc 65 |
. . . 4
  
      substr                  substr             
  ..^                    |
44 | | lbfzo0 12507 |
. . . . . . . . 9
  ..^
  |
45 | 44 | biimpri 218 |
. . . . . . . 8
  ..^   |
46 | 45 | 3ad2ant1 1082 |
. . . . . . 7
 
  ..^   |
47 | 46 | adantr 481 |
. . . . . 6
  
      substr                  substr             
 ..^   |
48 | | fveq2 6191 |
. . . . . . . 8
                   |
49 | | fveq2 6191 |
. . . . . . . 8
                   |
50 | 48, 49 | eqeq12d 2637 |
. . . . . . 7
                                     |
51 | 50 | rspcv 3305 |
. . . . . 6
  ..^
 
 ..^                                     |
52 | 47, 51 | syl 17 |
. . . . 5
  
      substr                  substr             
 
 ..^                                     |
53 | 1, 2, 3, 4 | clwlksf1clwwlklem2 26966 |
. . . . . . . 8
                   |
54 | 53 | 3ad2ant2 1083 |
. . . . . . 7
 
                   |
55 | 54 | adantr 481 |
. . . . . 6
  
      substr                  substr             
                  |
56 | 1, 2, 3, 4 | clwlksf1clwwlklem2 26966 |
. . . . . . . 8
                   |
57 | 56 | 3ad2ant3 1084 |
. . . . . . 7
 
                   |
58 | 57 | adantr 481 |
. . . . . 6
  
      substr                  substr             
                  |
59 | 55, 58 | eqeq12d 2637 |
. . . . 5
  
      substr                  substr             
                                    |
60 | 52, 59 | sylibd 229 |
. . . 4
  
      substr                  substr             
 
 ..^                                     |
61 | 43, 60 | jcai 559 |
. . 3
  
      substr                  substr             
 
 ..^                                     |
62 | | elnn0uz 11725 |
. . . . . . . . 9

      |
63 | 9, 62 | sylib 208 |
. . . . . . . 8
       |
64 | 63 | 3ad2ant1 1082 |
. . . . . . 7
 
       |
65 | 64 | adantr 481 |
. . . . . 6
  
      substr                  substr             
      |
66 | | fzisfzounsn 12580 |
. . . . . 6
    
      ..^      |
67 | 65, 66 | syl 17 |
. . . . 5
  
      substr                  substr             
      ..^      |
68 | 67 | raleqdv 3144 |
. . . 4
  
      substr                  substr             
 
                        ..^                        |
69 | | simpl1 1064 |
. . . . 5
  
      substr                  substr             
  |
70 | | fveq2 6191 |
. . . . . . 7
                   |
71 | | fveq2 6191 |
. . . . . . 7
                   |
72 | 70, 71 | eqeq12d 2637 |
. . . . . 6
                                     |
73 | 72 | ralunsn 4422 |
. . . . 5
  
  ..^                    
 
 ..^                                      |
74 | 69, 73 | syl 17 |
. . . 4
  
      substr                  substr             
 
  ..^                        ..^                 
                    |
75 | 68, 74 | bitrd 268 |
. . 3
  
      substr                  substr             
 
                        ..^                 
                    |
76 | 61, 75 | mpbird 247 |
. 2
  
      substr                  substr             
                        |
77 | 76 | ex 450 |
1
 
       substr            
     substr            
                         |