MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlksf1clwwlklem Structured version   Visualization version   Unicode version

Theorem clwlksf1clwwlklem 26968
Description: Lemma for clwlksf1clwwlk 26969. (Contributed by Alexander van der Vekens, 5-Jul-2018.) (Revised by AV, 3-May-2021.)
Hypotheses
Ref Expression
clwlksfclwwlk.1  |-  A  =  ( 1st `  c
)
clwlksfclwwlk.2  |-  B  =  ( 2nd `  c
)
clwlksfclwwlk.c  |-  C  =  { c  e.  (ClWalks `  G )  |  (
# `  A )  =  N }
clwlksfclwwlk.f  |-  F  =  ( c  e.  C  |->  ( B substr  <. 0 ,  ( # `  A
) >. ) )
Assertion
Ref Expression
clwlksf1clwwlklem  |-  ( ( N  e.  NN  /\  U  e.  C  /\  W  e.  C )  ->  ( ( ( 2nd `  U ) substr  <. 0 ,  ( # `  ( 1st `  U ) )
>. )  =  (
( 2nd `  W
) substr  <. 0 ,  (
# `  ( 1st `  W ) ) >.
)  ->  A. y  e.  ( 0 ... N
) ( ( 2nd `  U ) `  y
)  =  ( ( 2nd `  W ) `
 y ) ) )
Distinct variable groups:    G, c    N, c    W, c    C, c    F, c    y, G    y, N    U, c, y    y, W
Allowed substitution hints:    A( y, c)    B( y, c)    C( y)    F( y)

Proof of Theorem clwlksf1clwwlklem
StepHypRef Expression
1 clwlksfclwwlk.1 . . . . . . . . . . . 12  |-  A  =  ( 1st `  c
)
2 clwlksfclwwlk.2 . . . . . . . . . . . 12  |-  B  =  ( 2nd `  c
)
3 clwlksfclwwlk.c . . . . . . . . . . . 12  |-  C  =  { c  e.  (ClWalks `  G )  |  (
# `  A )  =  N }
4 clwlksfclwwlk.f . . . . . . . . . . . 12  |-  F  =  ( c  e.  C  |->  ( B substr  <. 0 ,  ( # `  A
) >. ) )
51, 2, 3, 4clwlksf1clwwlklem3 26967 . . . . . . . . . . 11  |-  ( W  e.  C  ->  ( 2nd `  W )  e. Word 
(Vtx `  G )
)
61, 2, 3, 4clwlksf1clwwlklem3 26967 . . . . . . . . . . 11  |-  ( U  e.  C  ->  ( 2nd `  U )  e. Word 
(Vtx `  G )
)
75, 6anim12ci 591 . . . . . . . . . 10  |-  ( ( W  e.  C  /\  U  e.  C )  ->  ( ( 2nd `  U
)  e. Word  (Vtx `  G
)  /\  ( 2nd `  W )  e. Word  (Vtx `  G ) ) )
87adantr 481 . . . . . . . . 9  |-  ( ( ( W  e.  C  /\  U  e.  C
)  /\  N  e.  NN )  ->  ( ( 2nd `  U )  e. Word  (Vtx `  G
)  /\  ( 2nd `  W )  e. Word  (Vtx `  G ) ) )
9 nnnn0 11299 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  N  e.  NN0 )
109adantl 482 . . . . . . . . . 10  |-  ( ( ( W  e.  C  /\  U  e.  C
)  /\  N  e.  NN )  ->  N  e. 
NN0 )
111, 2, 3, 4clwlksf1clwwlklem1 26965 . . . . . . . . . . . 12  |-  ( U  e.  C  ->  N  <_  ( # `  ( 2nd `  U ) ) )
1211adantl 482 . . . . . . . . . . 11  |-  ( ( W  e.  C  /\  U  e.  C )  ->  N  <_  ( # `  ( 2nd `  U ) ) )
1312adantr 481 . . . . . . . . . 10  |-  ( ( ( W  e.  C  /\  U  e.  C
)  /\  N  e.  NN )  ->  N  <_ 
( # `  ( 2nd `  U ) ) )
141, 2, 3, 4clwlksf1clwwlklem1 26965 . . . . . . . . . . . 12  |-  ( W  e.  C  ->  N  <_  ( # `  ( 2nd `  W ) ) )
1514adantr 481 . . . . . . . . . . 11  |-  ( ( W  e.  C  /\  U  e.  C )  ->  N  <_  ( # `  ( 2nd `  W ) ) )
1615adantr 481 . . . . . . . . . 10  |-  ( ( ( W  e.  C  /\  U  e.  C
)  /\  N  e.  NN )  ->  N  <_ 
( # `  ( 2nd `  W ) ) )
1710, 13, 163jca 1242 . . . . . . . . 9  |-  ( ( ( W  e.  C  /\  U  e.  C
)  /\  N  e.  NN )  ->  ( N  e.  NN0  /\  N  <_ 
( # `  ( 2nd `  U ) )  /\  N  <_  ( # `  ( 2nd `  W ) ) ) )
188, 17jca 554 . . . . . . . 8  |-  ( ( ( W  e.  C  /\  U  e.  C
)  /\  N  e.  NN )  ->  ( ( ( 2nd `  U
)  e. Word  (Vtx `  G
)  /\  ( 2nd `  W )  e. Word  (Vtx `  G ) )  /\  ( N  e.  NN0  /\  N  <_  ( # `  ( 2nd `  U ) )  /\  N  <_  ( # `
 ( 2nd `  W
) ) ) ) )
1918exp31 630 . . . . . . 7  |-  ( W  e.  C  ->  ( U  e.  C  ->  ( N  e.  NN  ->  ( ( ( 2nd `  U
)  e. Word  (Vtx `  G
)  /\  ( 2nd `  W )  e. Word  (Vtx `  G ) )  /\  ( N  e.  NN0  /\  N  <_  ( # `  ( 2nd `  U ) )  /\  N  <_  ( # `
 ( 2nd `  W
) ) ) ) ) ) )
20193imp31 1257 . . . . . 6  |-  ( ( N  e.  NN  /\  U  e.  C  /\  W  e.  C )  ->  ( ( ( 2nd `  U )  e. Word  (Vtx `  G )  /\  ( 2nd `  W )  e. Word 
(Vtx `  G )
)  /\  ( N  e.  NN0  /\  N  <_ 
( # `  ( 2nd `  U ) )  /\  N  <_  ( # `  ( 2nd `  W ) ) ) ) )
2120adantr 481 . . . . 5  |-  ( ( ( N  e.  NN  /\  U  e.  C  /\  W  e.  C )  /\  ( ( 2nd `  U
) substr  <. 0 ,  (
# `  ( 1st `  U ) ) >.
)  =  ( ( 2nd `  W ) substr  <. 0 ,  ( # `  ( 1st `  W
) ) >. )
)  ->  ( (
( 2nd `  U
)  e. Word  (Vtx `  G
)  /\  ( 2nd `  W )  e. Word  (Vtx `  G ) )  /\  ( N  e.  NN0  /\  N  <_  ( # `  ( 2nd `  U ) )  /\  N  <_  ( # `
 ( 2nd `  W
) ) ) ) )
221, 2, 3, 4clwlksfclwwlk1hashn 26959 . . . . . . . . . 10  |-  ( U  e.  C  ->  ( # `
 ( 1st `  U
) )  =  N )
23223ad2ant2 1083 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  U  e.  C  /\  W  e.  C )  ->  ( # `  ( 1st `  U ) )  =  N )
2423opeq2d 4409 . . . . . . . 8  |-  ( ( N  e.  NN  /\  U  e.  C  /\  W  e.  C )  -> 
<. 0 ,  (
# `  ( 1st `  U ) ) >.  =  <. 0 ,  N >. )
2524oveq2d 6666 . . . . . . 7  |-  ( ( N  e.  NN  /\  U  e.  C  /\  W  e.  C )  ->  ( ( 2nd `  U
) substr  <. 0 ,  (
# `  ( 1st `  U ) ) >.
)  =  ( ( 2nd `  U ) substr  <. 0 ,  N >. ) )
261, 2, 3, 4clwlksfclwwlk1hashn 26959 . . . . . . . . . 10  |-  ( W  e.  C  ->  ( # `
 ( 1st `  W
) )  =  N )
27263ad2ant3 1084 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  U  e.  C  /\  W  e.  C )  ->  ( # `  ( 1st `  W ) )  =  N )
2827opeq2d 4409 . . . . . . . 8  |-  ( ( N  e.  NN  /\  U  e.  C  /\  W  e.  C )  -> 
<. 0 ,  (
# `  ( 1st `  W ) ) >.  =  <. 0 ,  N >. )
2928oveq2d 6666 . . . . . . 7  |-  ( ( N  e.  NN  /\  U  e.  C  /\  W  e.  C )  ->  ( ( 2nd `  W
) substr  <. 0 ,  (
# `  ( 1st `  W ) ) >.
)  =  ( ( 2nd `  W ) substr  <. 0 ,  N >. ) )
3025, 29eqeq12d 2637 . . . . . 6  |-  ( ( N  e.  NN  /\  U  e.  C  /\  W  e.  C )  ->  ( ( ( 2nd `  U ) substr  <. 0 ,  ( # `  ( 1st `  U ) )
>. )  =  (
( 2nd `  W
) substr  <. 0 ,  (
# `  ( 1st `  W ) ) >.
)  <->  ( ( 2nd `  U ) substr  <. 0 ,  N >. )  =  ( ( 2nd `  W
) substr  <. 0 ,  N >. ) ) )
3130biimpa 501 . . . . 5  |-  ( ( ( N  e.  NN  /\  U  e.  C  /\  W  e.  C )  /\  ( ( 2nd `  U
) substr  <. 0 ,  (
# `  ( 1st `  U ) ) >.
)  =  ( ( 2nd `  W ) substr  <. 0 ,  ( # `  ( 1st `  W
) ) >. )
)  ->  ( ( 2nd `  U ) substr  <. 0 ,  N >. )  =  ( ( 2nd `  W ) substr  <. 0 ,  N >. ) )
32 simpl 473 . . . . . . 7  |-  ( ( ( ( 2nd `  U
)  e. Word  (Vtx `  G
)  /\  ( 2nd `  W )  e. Word  (Vtx `  G ) )  /\  ( N  e.  NN0  /\  N  <_  ( # `  ( 2nd `  U ) )  /\  N  <_  ( # `
 ( 2nd `  W
) ) ) )  ->  ( ( 2nd `  U )  e. Word  (Vtx `  G )  /\  ( 2nd `  W )  e. Word 
(Vtx `  G )
) )
33 id 22 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  N  e. 
NN0 )
3433, 33jca 554 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( N  e.  NN0  /\  N  e. 
NN0 ) )
35343ad2ant1 1082 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  N  <_  ( # `  ( 2nd `  U ) )  /\  N  <_  ( # `
 ( 2nd `  W
) ) )  -> 
( N  e.  NN0  /\  N  e.  NN0 )
)
3635adantl 482 . . . . . . 7  |-  ( ( ( ( 2nd `  U
)  e. Word  (Vtx `  G
)  /\  ( 2nd `  W )  e. Word  (Vtx `  G ) )  /\  ( N  e.  NN0  /\  N  <_  ( # `  ( 2nd `  U ) )  /\  N  <_  ( # `
 ( 2nd `  W
) ) ) )  ->  ( N  e. 
NN0  /\  N  e.  NN0 ) )
37 3simpc 1060 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  N  <_  ( # `  ( 2nd `  U ) )  /\  N  <_  ( # `
 ( 2nd `  W
) ) )  -> 
( N  <_  ( # `
 ( 2nd `  U
) )  /\  N  <_  ( # `  ( 2nd `  W ) ) ) )
3837adantl 482 . . . . . . 7  |-  ( ( ( ( 2nd `  U
)  e. Word  (Vtx `  G
)  /\  ( 2nd `  W )  e. Word  (Vtx `  G ) )  /\  ( N  e.  NN0  /\  N  <_  ( # `  ( 2nd `  U ) )  /\  N  <_  ( # `
 ( 2nd `  W
) ) ) )  ->  ( N  <_ 
( # `  ( 2nd `  U ) )  /\  N  <_  ( # `  ( 2nd `  W ) ) ) )
39 swrdeq 13444 . . . . . . 7  |-  ( ( ( ( 2nd `  U
)  e. Word  (Vtx `  G
)  /\  ( 2nd `  W )  e. Word  (Vtx `  G ) )  /\  ( N  e.  NN0  /\  N  e.  NN0 )  /\  ( N  <_  ( # `
 ( 2nd `  U
) )  /\  N  <_  ( # `  ( 2nd `  W ) ) ) )  ->  (
( ( 2nd `  U
) substr  <. 0 ,  N >. )  =  ( ( 2nd `  W ) substr  <. 0 ,  N >. )  <-> 
( N  =  N  /\  A. y  e.  ( 0..^ N ) ( ( 2nd `  U
) `  y )  =  ( ( 2nd `  W ) `  y
) ) ) )
4032, 36, 38, 39syl3anc 1326 . . . . . 6  |-  ( ( ( ( 2nd `  U
)  e. Word  (Vtx `  G
)  /\  ( 2nd `  W )  e. Word  (Vtx `  G ) )  /\  ( N  e.  NN0  /\  N  <_  ( # `  ( 2nd `  U ) )  /\  N  <_  ( # `
 ( 2nd `  W
) ) ) )  ->  ( ( ( 2nd `  U ) substr  <. 0 ,  N >. )  =  ( ( 2nd `  W ) substr  <. 0 ,  N >. )  <->  ( N  =  N  /\  A. y  e.  ( 0..^ N ) ( ( 2nd `  U
) `  y )  =  ( ( 2nd `  W ) `  y
) ) ) )
41 simpr 477 . . . . . 6  |-  ( ( N  =  N  /\  A. y  e.  ( 0..^ N ) ( ( 2nd `  U ) `
 y )  =  ( ( 2nd `  W
) `  y )
)  ->  A. y  e.  ( 0..^ N ) ( ( 2nd `  U
) `  y )  =  ( ( 2nd `  W ) `  y
) )
4240, 41syl6bi 243 . . . . 5  |-  ( ( ( ( 2nd `  U
)  e. Word  (Vtx `  G
)  /\  ( 2nd `  W )  e. Word  (Vtx `  G ) )  /\  ( N  e.  NN0  /\  N  <_  ( # `  ( 2nd `  U ) )  /\  N  <_  ( # `
 ( 2nd `  W
) ) ) )  ->  ( ( ( 2nd `  U ) substr  <. 0 ,  N >. )  =  ( ( 2nd `  W ) substr  <. 0 ,  N >. )  ->  A. y  e.  ( 0..^ N ) ( ( 2nd `  U
) `  y )  =  ( ( 2nd `  W ) `  y
) ) )
4321, 31, 42sylc 65 . . . 4  |-  ( ( ( N  e.  NN  /\  U  e.  C  /\  W  e.  C )  /\  ( ( 2nd `  U
) substr  <. 0 ,  (
# `  ( 1st `  U ) ) >.
)  =  ( ( 2nd `  W ) substr  <. 0 ,  ( # `  ( 1st `  W
) ) >. )
)  ->  A. y  e.  ( 0..^ N ) ( ( 2nd `  U
) `  y )  =  ( ( 2nd `  W ) `  y
) )
44 lbfzo0 12507 . . . . . . . . 9  |-  ( 0  e.  ( 0..^ N )  <->  N  e.  NN )
4544biimpri 218 . . . . . . . 8  |-  ( N  e.  NN  ->  0  e.  ( 0..^ N ) )
46453ad2ant1 1082 . . . . . . 7  |-  ( ( N  e.  NN  /\  U  e.  C  /\  W  e.  C )  ->  0  e.  ( 0..^ N ) )
4746adantr 481 . . . . . 6  |-  ( ( ( N  e.  NN  /\  U  e.  C  /\  W  e.  C )  /\  ( ( 2nd `  U
) substr  <. 0 ,  (
# `  ( 1st `  U ) ) >.
)  =  ( ( 2nd `  W ) substr  <. 0 ,  ( # `  ( 1st `  W
) ) >. )
)  ->  0  e.  ( 0..^ N ) )
48 fveq2 6191 . . . . . . . 8  |-  ( y  =  0  ->  (
( 2nd `  U
) `  y )  =  ( ( 2nd `  U ) `  0
) )
49 fveq2 6191 . . . . . . . 8  |-  ( y  =  0  ->  (
( 2nd `  W
) `  y )  =  ( ( 2nd `  W ) `  0
) )
5048, 49eqeq12d 2637 . . . . . . 7  |-  ( y  =  0  ->  (
( ( 2nd `  U
) `  y )  =  ( ( 2nd `  W ) `  y
)  <->  ( ( 2nd `  U ) `  0
)  =  ( ( 2nd `  W ) `
 0 ) ) )
5150rspcv 3305 . . . . . 6  |-  ( 0  e.  ( 0..^ N )  ->  ( A. y  e.  ( 0..^ N ) ( ( 2nd `  U ) `
 y )  =  ( ( 2nd `  W
) `  y )  ->  ( ( 2nd `  U
) `  0 )  =  ( ( 2nd `  W ) `  0
) ) )
5247, 51syl 17 . . . . 5  |-  ( ( ( N  e.  NN  /\  U  e.  C  /\  W  e.  C )  /\  ( ( 2nd `  U
) substr  <. 0 ,  (
# `  ( 1st `  U ) ) >.
)  =  ( ( 2nd `  W ) substr  <. 0 ,  ( # `  ( 1st `  W
) ) >. )
)  ->  ( A. y  e.  ( 0..^ N ) ( ( 2nd `  U ) `
 y )  =  ( ( 2nd `  W
) `  y )  ->  ( ( 2nd `  U
) `  0 )  =  ( ( 2nd `  W ) `  0
) ) )
531, 2, 3, 4clwlksf1clwwlklem2 26966 . . . . . . . 8  |-  ( U  e.  C  ->  (
( 2nd `  U
) `  0 )  =  ( ( 2nd `  U ) `  N
) )
54533ad2ant2 1083 . . . . . . 7  |-  ( ( N  e.  NN  /\  U  e.  C  /\  W  e.  C )  ->  ( ( 2nd `  U
) `  0 )  =  ( ( 2nd `  U ) `  N
) )
5554adantr 481 . . . . . 6  |-  ( ( ( N  e.  NN  /\  U  e.  C  /\  W  e.  C )  /\  ( ( 2nd `  U
) substr  <. 0 ,  (
# `  ( 1st `  U ) ) >.
)  =  ( ( 2nd `  W ) substr  <. 0 ,  ( # `  ( 1st `  W
) ) >. )
)  ->  ( ( 2nd `  U ) ` 
0 )  =  ( ( 2nd `  U
) `  N )
)
561, 2, 3, 4clwlksf1clwwlklem2 26966 . . . . . . . 8  |-  ( W  e.  C  ->  (
( 2nd `  W
) `  0 )  =  ( ( 2nd `  W ) `  N
) )
57563ad2ant3 1084 . . . . . . 7  |-  ( ( N  e.  NN  /\  U  e.  C  /\  W  e.  C )  ->  ( ( 2nd `  W
) `  0 )  =  ( ( 2nd `  W ) `  N
) )
5857adantr 481 . . . . . 6  |-  ( ( ( N  e.  NN  /\  U  e.  C  /\  W  e.  C )  /\  ( ( 2nd `  U
) substr  <. 0 ,  (
# `  ( 1st `  U ) ) >.
)  =  ( ( 2nd `  W ) substr  <. 0 ,  ( # `  ( 1st `  W
) ) >. )
)  ->  ( ( 2nd `  W ) ` 
0 )  =  ( ( 2nd `  W
) `  N )
)
5955, 58eqeq12d 2637 . . . . 5  |-  ( ( ( N  e.  NN  /\  U  e.  C  /\  W  e.  C )  /\  ( ( 2nd `  U
) substr  <. 0 ,  (
# `  ( 1st `  U ) ) >.
)  =  ( ( 2nd `  W ) substr  <. 0 ,  ( # `  ( 1st `  W
) ) >. )
)  ->  ( (
( 2nd `  U
) `  0 )  =  ( ( 2nd `  W ) `  0
)  <->  ( ( 2nd `  U ) `  N
)  =  ( ( 2nd `  W ) `
 N ) ) )
6052, 59sylibd 229 . . . 4  |-  ( ( ( N  e.  NN  /\  U  e.  C  /\  W  e.  C )  /\  ( ( 2nd `  U
) substr  <. 0 ,  (
# `  ( 1st `  U ) ) >.
)  =  ( ( 2nd `  W ) substr  <. 0 ,  ( # `  ( 1st `  W
) ) >. )
)  ->  ( A. y  e.  ( 0..^ N ) ( ( 2nd `  U ) `
 y )  =  ( ( 2nd `  W
) `  y )  ->  ( ( 2nd `  U
) `  N )  =  ( ( 2nd `  W ) `  N
) ) )
6143, 60jcai 559 . . 3  |-  ( ( ( N  e.  NN  /\  U  e.  C  /\  W  e.  C )  /\  ( ( 2nd `  U
) substr  <. 0 ,  (
# `  ( 1st `  U ) ) >.
)  =  ( ( 2nd `  W ) substr  <. 0 ,  ( # `  ( 1st `  W
) ) >. )
)  ->  ( A. y  e.  ( 0..^ N ) ( ( 2nd `  U ) `
 y )  =  ( ( 2nd `  W
) `  y )  /\  ( ( 2nd `  U
) `  N )  =  ( ( 2nd `  W ) `  N
) ) )
62 elnn0uz 11725 . . . . . . . . 9  |-  ( N  e.  NN0  <->  N  e.  ( ZZ>=
`  0 ) )
639, 62sylib 208 . . . . . . . 8  |-  ( N  e.  NN  ->  N  e.  ( ZZ>= `  0 )
)
64633ad2ant1 1082 . . . . . . 7  |-  ( ( N  e.  NN  /\  U  e.  C  /\  W  e.  C )  ->  N  e.  ( ZZ>= ` 
0 ) )
6564adantr 481 . . . . . 6  |-  ( ( ( N  e.  NN  /\  U  e.  C  /\  W  e.  C )  /\  ( ( 2nd `  U
) substr  <. 0 ,  (
# `  ( 1st `  U ) ) >.
)  =  ( ( 2nd `  W ) substr  <. 0 ,  ( # `  ( 1st `  W
) ) >. )
)  ->  N  e.  ( ZZ>= `  0 )
)
66 fzisfzounsn 12580 . . . . . 6  |-  ( N  e.  ( ZZ>= `  0
)  ->  ( 0 ... N )  =  ( ( 0..^ N )  u.  { N } ) )
6765, 66syl 17 . . . . 5  |-  ( ( ( N  e.  NN  /\  U  e.  C  /\  W  e.  C )  /\  ( ( 2nd `  U
) substr  <. 0 ,  (
# `  ( 1st `  U ) ) >.
)  =  ( ( 2nd `  W ) substr  <. 0 ,  ( # `  ( 1st `  W
) ) >. )
)  ->  ( 0 ... N )  =  ( ( 0..^ N )  u.  { N } ) )
6867raleqdv 3144 . . . 4  |-  ( ( ( N  e.  NN  /\  U  e.  C  /\  W  e.  C )  /\  ( ( 2nd `  U
) substr  <. 0 ,  (
# `  ( 1st `  U ) ) >.
)  =  ( ( 2nd `  W ) substr  <. 0 ,  ( # `  ( 1st `  W
) ) >. )
)  ->  ( A. y  e.  ( 0 ... N ) ( ( 2nd `  U
) `  y )  =  ( ( 2nd `  W ) `  y
)  <->  A. y  e.  ( ( 0..^ N )  u.  { N }
) ( ( 2nd `  U ) `  y
)  =  ( ( 2nd `  W ) `
 y ) ) )
69 simpl1 1064 . . . . 5  |-  ( ( ( N  e.  NN  /\  U  e.  C  /\  W  e.  C )  /\  ( ( 2nd `  U
) substr  <. 0 ,  (
# `  ( 1st `  U ) ) >.
)  =  ( ( 2nd `  W ) substr  <. 0 ,  ( # `  ( 1st `  W
) ) >. )
)  ->  N  e.  NN )
70 fveq2 6191 . . . . . . 7  |-  ( y  =  N  ->  (
( 2nd `  U
) `  y )  =  ( ( 2nd `  U ) `  N
) )
71 fveq2 6191 . . . . . . 7  |-  ( y  =  N  ->  (
( 2nd `  W
) `  y )  =  ( ( 2nd `  W ) `  N
) )
7270, 71eqeq12d 2637 . . . . . 6  |-  ( y  =  N  ->  (
( ( 2nd `  U
) `  y )  =  ( ( 2nd `  W ) `  y
)  <->  ( ( 2nd `  U ) `  N
)  =  ( ( 2nd `  W ) `
 N ) ) )
7372ralunsn 4422 . . . . 5  |-  ( N  e.  NN  ->  ( A. y  e.  (
( 0..^ N )  u.  { N }
) ( ( 2nd `  U ) `  y
)  =  ( ( 2nd `  W ) `
 y )  <->  ( A. y  e.  ( 0..^ N ) ( ( 2nd `  U ) `
 y )  =  ( ( 2nd `  W
) `  y )  /\  ( ( 2nd `  U
) `  N )  =  ( ( 2nd `  W ) `  N
) ) ) )
7469, 73syl 17 . . . 4  |-  ( ( ( N  e.  NN  /\  U  e.  C  /\  W  e.  C )  /\  ( ( 2nd `  U
) substr  <. 0 ,  (
# `  ( 1st `  U ) ) >.
)  =  ( ( 2nd `  W ) substr  <. 0 ,  ( # `  ( 1st `  W
) ) >. )
)  ->  ( A. y  e.  ( (
0..^ N )  u. 
{ N } ) ( ( 2nd `  U
) `  y )  =  ( ( 2nd `  W ) `  y
)  <->  ( A. y  e.  ( 0..^ N ) ( ( 2nd `  U
) `  y )  =  ( ( 2nd `  W ) `  y
)  /\  ( ( 2nd `  U ) `  N )  =  ( ( 2nd `  W
) `  N )
) ) )
7568, 74bitrd 268 . . 3  |-  ( ( ( N  e.  NN  /\  U  e.  C  /\  W  e.  C )  /\  ( ( 2nd `  U
) substr  <. 0 ,  (
# `  ( 1st `  U ) ) >.
)  =  ( ( 2nd `  W ) substr  <. 0 ,  ( # `  ( 1st `  W
) ) >. )
)  ->  ( A. y  e.  ( 0 ... N ) ( ( 2nd `  U
) `  y )  =  ( ( 2nd `  W ) `  y
)  <->  ( A. y  e.  ( 0..^ N ) ( ( 2nd `  U
) `  y )  =  ( ( 2nd `  W ) `  y
)  /\  ( ( 2nd `  U ) `  N )  =  ( ( 2nd `  W
) `  N )
) ) )
7661, 75mpbird 247 . 2  |-  ( ( ( N  e.  NN  /\  U  e.  C  /\  W  e.  C )  /\  ( ( 2nd `  U
) substr  <. 0 ,  (
# `  ( 1st `  U ) ) >.
)  =  ( ( 2nd `  W ) substr  <. 0 ,  ( # `  ( 1st `  W
) ) >. )
)  ->  A. y  e.  ( 0 ... N
) ( ( 2nd `  U ) `  y
)  =  ( ( 2nd `  W ) `
 y ) )
7776ex 450 1  |-  ( ( N  e.  NN  /\  U  e.  C  /\  W  e.  C )  ->  ( ( ( 2nd `  U ) substr  <. 0 ,  ( # `  ( 1st `  U ) )
>. )  =  (
( 2nd `  W
) substr  <. 0 ,  (
# `  ( 1st `  W ) ) >.
)  ->  A. y  e.  ( 0 ... N
) ( ( 2nd `  U ) `  y
)  =  ( ( 2nd `  W ) `
 y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916    u. cun 3572   {csn 4177   <.cop 4183   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   0cc0 9936    <_ cle 10075   NNcn 11020   NN0cn0 11292   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   substr csubstr 13295  Vtxcvtx 25874  ClWalkscclwlks 26666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-substr 13303  df-wlks 26495  df-clwlks 26667
This theorem is referenced by:  clwlksf1clwwlk  26969
  Copyright terms: Public domain W3C validator