MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlksfclwwlk2wrd Structured version   Visualization version   Unicode version

Theorem clwlksfclwwlk2wrd 26958
Description: The second component of a closed walk is a word over the "vertices". (Contributed by Alexander van der Vekens, 25-Jun-2018.) (Revised by AV, 2-May-2021.)
Hypotheses
Ref Expression
clwlksfclwwlk.1  |-  A  =  ( 1st `  c
)
clwlksfclwwlk.2  |-  B  =  ( 2nd `  c
)
clwlksfclwwlk.c  |-  C  =  { c  e.  (ClWalks `  G )  |  (
# `  A )  =  N }
clwlksfclwwlk.f  |-  F  =  ( c  e.  C  |->  ( B substr  <. 0 ,  ( # `  A
) >. ) )
Assertion
Ref Expression
clwlksfclwwlk2wrd  |-  ( c  e.  C  ->  B  e. Word  (Vtx `  G )
)
Distinct variable group:    G, c
Allowed substitution hints:    A( c)    B( c)    C( c)    F( c)    N( c)

Proof of Theorem clwlksfclwwlk2wrd
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 clwlksfclwwlk.c . . 3  |-  C  =  { c  e.  (ClWalks `  G )  |  (
# `  A )  =  N }
21rabeq2i 3197 . 2  |-  ( c  e.  C  <->  ( c  e.  (ClWalks `  G )  /\  ( # `  A
)  =  N ) )
3 eqid 2622 . . . . 5  |-  (Vtx `  G )  =  (Vtx
`  G )
4 eqid 2622 . . . . 5  |-  (iEdg `  G )  =  (iEdg `  G )
5 clwlksfclwwlk.1 . . . . 5  |-  A  =  ( 1st `  c
)
6 clwlksfclwwlk.2 . . . . 5  |-  B  =  ( 2nd `  c
)
73, 4, 5, 6clwlkcompim 26676 . . . 4  |-  ( c  e.  (ClWalks `  G
)  ->  ( ( A  e. Word  dom  (iEdg `  G )  /\  B : ( 0 ... ( # `  A
) ) --> (Vtx `  G ) )  /\  ( A. i  e.  ( 0..^ ( # `  A
) )if- ( ( B `  i )  =  ( B `  ( i  +  1 ) ) ,  ( (iEdg `  G ) `  ( A `  i
) )  =  {
( B `  i
) } ,  {
( B `  i
) ,  ( B `
 ( i  +  1 ) ) } 
C_  ( (iEdg `  G ) `  ( A `  i )
) )  /\  ( B `  0 )  =  ( B `  ( # `  A ) ) ) ) )
8 lencl 13324 . . . . . 6  |-  ( A  e. Word  dom  (iEdg `  G
)  ->  ( # `  A
)  e.  NN0 )
9 nn0z 11400 . . . . . . . . . 10  |-  ( (
# `  A )  e.  NN0  ->  ( # `  A
)  e.  ZZ )
10 fzval3 12536 . . . . . . . . . 10  |-  ( (
# `  A )  e.  ZZ  ->  ( 0 ... ( # `  A
) )  =  ( 0..^ ( ( # `  A )  +  1 ) ) )
119, 10syl 17 . . . . . . . . 9  |-  ( (
# `  A )  e.  NN0  ->  ( 0 ... ( # `  A
) )  =  ( 0..^ ( ( # `  A )  +  1 ) ) )
1211feq2d 6031 . . . . . . . 8  |-  ( (
# `  A )  e.  NN0  ->  ( B : ( 0 ... ( # `  A
) ) --> (Vtx `  G )  <->  B :
( 0..^ ( (
# `  A )  +  1 ) ) --> (Vtx `  G )
) )
1312biimpa 501 . . . . . . 7  |-  ( ( ( # `  A
)  e.  NN0  /\  B : ( 0 ... ( # `  A
) ) --> (Vtx `  G ) )  ->  B : ( 0..^ ( ( # `  A
)  +  1 ) ) --> (Vtx `  G
) )
14 iswrdi 13309 . . . . . . 7  |-  ( B : ( 0..^ ( ( # `  A
)  +  1 ) ) --> (Vtx `  G
)  ->  B  e. Word  (Vtx
`  G ) )
1513, 14syl 17 . . . . . 6  |-  ( ( ( # `  A
)  e.  NN0  /\  B : ( 0 ... ( # `  A
) ) --> (Vtx `  G ) )  ->  B  e. Word  (Vtx `  G
) )
168, 15sylan 488 . . . . 5  |-  ( ( A  e. Word  dom  (iEdg `  G )  /\  B : ( 0 ... ( # `  A
) ) --> (Vtx `  G ) )  ->  B  e. Word  (Vtx `  G
) )
1716adantr 481 . . . 4  |-  ( ( ( A  e. Word  dom  (iEdg `  G )  /\  B : ( 0 ... ( # `  A
) ) --> (Vtx `  G ) )  /\  ( A. i  e.  ( 0..^ ( # `  A
) )if- ( ( B `  i )  =  ( B `  ( i  +  1 ) ) ,  ( (iEdg `  G ) `  ( A `  i
) )  =  {
( B `  i
) } ,  {
( B `  i
) ,  ( B `
 ( i  +  1 ) ) } 
C_  ( (iEdg `  G ) `  ( A `  i )
) )  /\  ( B `  0 )  =  ( B `  ( # `  A ) ) ) )  ->  B  e. Word  (Vtx `  G
) )
187, 17syl 17 . . 3  |-  ( c  e.  (ClWalks `  G
)  ->  B  e. Word  (Vtx
`  G ) )
1918adantr 481 . 2  |-  ( ( c  e.  (ClWalks `  G
)  /\  ( # `  A
)  =  N )  ->  B  e. Word  (Vtx `  G ) )
202, 19sylbi 207 1  |-  ( c  e.  C  ->  B  e. Word  (Vtx `  G )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384  if-wif 1012    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916    C_ wss 3574   {csn 4177   {cpr 4179   <.cop 4183    |-> cmpt 4729   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   0cc0 9936   1c1 9937    + caddc 9939   NN0cn0 11292   ZZcz 11377   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   substr csubstr 13295  Vtxcvtx 25874  iEdgciedg 25875  ClWalkscclwlks 26666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-wlks 26495  df-clwlks 26667
This theorem is referenced by:  clwlksfclwwlk2sswd  26961  clwlksfclwwlk  26962
  Copyright terms: Public domain W3C validator