MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzrcl Structured version   Visualization version   Unicode version

Theorem cntzrcl 17760
Description: Reverse closure for elements of the centralizer. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Hypotheses
Ref Expression
cntzrcl.b  |-  B  =  ( Base `  M
)
cntzrcl.z  |-  Z  =  (Cntz `  M )
Assertion
Ref Expression
cntzrcl  |-  ( X  e.  ( Z `  S )  ->  ( M  e.  _V  /\  S  C_  B ) )

Proof of Theorem cntzrcl
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 noel 3919 . . . 4  |-  -.  X  e.  (/)
2 cntzrcl.z . . . . . . . 8  |-  Z  =  (Cntz `  M )
3 fvprc 6185 . . . . . . . 8  |-  ( -.  M  e.  _V  ->  (Cntz `  M )  =  (/) )
42, 3syl5eq 2668 . . . . . . 7  |-  ( -.  M  e.  _V  ->  Z  =  (/) )
54fveq1d 6193 . . . . . 6  |-  ( -.  M  e.  _V  ->  ( Z `  S )  =  ( (/) `  S
) )
6 0fv 6227 . . . . . 6  |-  ( (/) `  S )  =  (/)
75, 6syl6eq 2672 . . . . 5  |-  ( -.  M  e.  _V  ->  ( Z `  S )  =  (/) )
87eleq2d 2687 . . . 4  |-  ( -.  M  e.  _V  ->  ( X  e.  ( Z `
 S )  <->  X  e.  (/) ) )
91, 8mtbiri 317 . . 3  |-  ( -.  M  e.  _V  ->  -.  X  e.  ( Z `
 S ) )
109con4i 113 . 2  |-  ( X  e.  ( Z `  S )  ->  M  e.  _V )
11 cntzrcl.b . . . . . . . 8  |-  B  =  ( Base `  M
)
12 eqid 2622 . . . . . . . 8  |-  ( +g  `  M )  =  ( +g  `  M )
1311, 12, 2cntzfval 17753 . . . . . . 7  |-  ( M  e.  _V  ->  Z  =  ( x  e. 
~P B  |->  { y  e.  B  |  A. z  e.  x  (
y ( +g  `  M
) z )  =  ( z ( +g  `  M ) y ) } ) )
1410, 13syl 17 . . . . . 6  |-  ( X  e.  ( Z `  S )  ->  Z  =  ( x  e. 
~P B  |->  { y  e.  B  |  A. z  e.  x  (
y ( +g  `  M
) z )  =  ( z ( +g  `  M ) y ) } ) )
1514dmeqd 5326 . . . . 5  |-  ( X  e.  ( Z `  S )  ->  dom  Z  =  dom  ( x  e.  ~P B  |->  { y  e.  B  |  A. z  e.  x  ( y ( +g  `  M ) z )  =  ( z ( +g  `  M ) y ) } ) )
16 eqid 2622 . . . . . 6  |-  ( x  e.  ~P B  |->  { y  e.  B  |  A. z  e.  x  ( y ( +g  `  M ) z )  =  ( z ( +g  `  M ) y ) } )  =  ( x  e. 
~P B  |->  { y  e.  B  |  A. z  e.  x  (
y ( +g  `  M
) z )  =  ( z ( +g  `  M ) y ) } )
1716dmmptss 5631 . . . . 5  |-  dom  (
x  e.  ~P B  |->  { y  e.  B  |  A. z  e.  x  ( y ( +g  `  M ) z )  =  ( z ( +g  `  M ) y ) } ) 
C_  ~P B
1815, 17syl6eqss 3655 . . . 4  |-  ( X  e.  ( Z `  S )  ->  dom  Z 
C_  ~P B )
19 elfvdm 6220 . . . 4  |-  ( X  e.  ( Z `  S )  ->  S  e.  dom  Z )
2018, 19sseldd 3604 . . 3  |-  ( X  e.  ( Z `  S )  ->  S  e.  ~P B )
2120elpwid 4170 . 2  |-  ( X  e.  ( Z `  S )  ->  S  C_  B )
2210, 21jca 554 1  |-  ( X  e.  ( Z `  S )  ->  ( M  e.  _V  /\  S  C_  B ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ~Pcpw 4158    |-> cmpt 4729   dom cdm 5114   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941  Cntzccntz 17748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-cntz 17750
This theorem is referenced by:  cntzssv  17761  cntzi  17762  resscntz  17764  cntzmhm  17771  oppgcntz  17794
  Copyright terms: Public domain W3C validator