Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvco2 Structured version   Visualization version   Unicode version

Theorem cnvco2 31650
Description: Another distributive law of converse over class composition. (Contributed by Scott Fenton, 3-May-2014.)
Assertion
Ref Expression
cnvco2  |-  `' ( A  o.  `' B
)  =  ( B  o.  `' A )

Proof of Theorem cnvco2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5503 . 2  |-  Rel  `' ( A  o.  `' B )
2 relco 5633 . 2  |-  Rel  ( B  o.  `' A
)
3 vex 3203 . . . . . 6  |-  y  e. 
_V
4 vex 3203 . . . . . 6  |-  z  e. 
_V
53, 4brcnv 5305 . . . . 5  |-  ( y `' B z  <->  z B
y )
6 vex 3203 . . . . . . 7  |-  x  e. 
_V
76, 4brcnv 5305 . . . . . 6  |-  ( x `' A z  <->  z A x )
87bicomi 214 . . . . 5  |-  ( z A x  <->  x `' A z )
95, 8anbi12ci 734 . . . 4  |-  ( ( y `' B z  /\  z A x )  <->  ( x `' A z  /\  z B y ) )
109exbii 1774 . . 3  |-  ( E. z ( y `' B z  /\  z A x )  <->  E. z
( x `' A
z  /\  z B
y ) )
116, 3opelcnv 5304 . . . 4  |-  ( <.
x ,  y >.  e.  `' ( A  o.  `' B )  <->  <. y ,  x >.  e.  ( A  o.  `' B
) )
123, 6opelco 5293 . . . 4  |-  ( <.
y ,  x >.  e.  ( A  o.  `' B )  <->  E. z
( y `' B
z  /\  z A x ) )
1311, 12bitri 264 . . 3  |-  ( <.
x ,  y >.  e.  `' ( A  o.  `' B )  <->  E. z
( y `' B
z  /\  z A x ) )
146, 3opelco 5293 . . 3  |-  ( <.
x ,  y >.  e.  ( B  o.  `' A )  <->  E. z
( x `' A
z  /\  z B
y ) )
1510, 13, 143bitr4i 292 . 2  |-  ( <.
x ,  y >.  e.  `' ( A  o.  `' B )  <->  <. x ,  y >.  e.  ( B  o.  `' A
) )
161, 2, 15eqrelriiv 5214 1  |-  `' ( A  o.  `' B
)  =  ( B  o.  `' A )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   <.cop 4183   class class class wbr 4653   `'ccnv 5113    o. ccom 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator