MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cphnmfval Structured version   Visualization version   Unicode version

Theorem cphnmfval 22992
Description: The value of the norm in a subcomplex pre-Hilbert space is the square root of the inner product of a vector with itself. (Contributed by Mario Carneiro, 7-Oct-2015.)
Hypotheses
Ref Expression
nmsq.v  |-  V  =  ( Base `  W
)
nmsq.h  |-  .,  =  ( .i `  W )
nmsq.n  |-  N  =  ( norm `  W
)
Assertion
Ref Expression
cphnmfval  |-  ( W  e.  CPreHil  ->  N  =  ( x  e.  V  |->  ( sqr `  ( x 
.,  x ) ) ) )
Distinct variable groups:    x,  .,    x, V   
x, W
Allowed substitution hint:    N( x)

Proof of Theorem cphnmfval
StepHypRef Expression
1 nmsq.v . . 3  |-  V  =  ( Base `  W
)
2 nmsq.h . . 3  |-  .,  =  ( .i `  W )
3 nmsq.n . . 3  |-  N  =  ( norm `  W
)
4 eqid 2622 . . 3  |-  (Scalar `  W )  =  (Scalar `  W )
5 eqid 2622 . . 3  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
61, 2, 3, 4, 5iscph 22970 . 2  |-  ( W  e.  CPreHil 
<->  ( ( W  e. 
PreHil  /\  W  e. NrmMod  /\  (Scalar `  W )  =  (flds  ( Base `  (Scalar `  W )
) ) )  /\  ( sqr " ( (
Base `  (Scalar `  W
) )  i^i  (
0 [,) +oo )
) )  C_  ( Base `  (Scalar `  W
) )  /\  N  =  ( x  e.  V  |->  ( sqr `  (
x  .,  x )
) ) ) )
76simp3bi 1078 1  |-  ( W  e.  CPreHil  ->  N  =  ( x  e.  V  |->  ( sqr `  ( x 
.,  x ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990    i^i cin 3573    C_ wss 3574    |-> cmpt 4729   "cima 5117   ` cfv 5888  (class class class)co 6650   0cc0 9936   +oocpnf 10071   [,)cico 12177   sqrcsqrt 13973   Basecbs 15857   ↾s cress 15858  Scalarcsca 15944   .icip 15946  ℂfldccnfld 19746   PreHilcphl 19969   normcnm 22381  NrmModcnlm 22385   CPreHilccph 22966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fv 5896  df-ov 6653  df-cph 22968
This theorem is referenced by:  cphnm  22993  cphnmf  22995  cphtchnm  23029
  Copyright terms: Public domain W3C validator