MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmat Structured version   Visualization version   Unicode version

Theorem cpmat 20514
Description: Value of the constructor of the set of all constant polynomial matrices, i.e. the set of all  N x  N matrices of polynomials over a ring  R. (Contributed by AV, 15-Nov-2019.)
Hypotheses
Ref Expression
cpmat.s  |-  S  =  ( N ConstPolyMat  R )
cpmat.p  |-  P  =  (Poly1 `  R )
cpmat.c  |-  C  =  ( N Mat  P )
cpmat.b  |-  B  =  ( Base `  C
)
Assertion
Ref Expression
cpmat  |-  ( ( N  e.  Fin  /\  R  e.  V )  ->  S  =  { m  e.  B  |  A. i  e.  N  A. j  e.  N  A. k  e.  NN  (
(coe1 `  ( i m j ) ) `  k )  =  ( 0g `  R ) } )
Distinct variable groups:    B, m    i, N, j, k, m    R, i, j, k, m
Allowed substitution hints:    B( i, j, k)    C( i, j, k, m)    P( i, j, k, m)    S( i, j, k, m)    V( i, j, k, m)

Proof of Theorem cpmat
Dummy variables  n  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cpmat.s . 2  |-  S  =  ( N ConstPolyMat  R )
2 df-cpmat 20511 . . . 4  |- ConstPolyMat  =  (
n  e.  Fin , 
r  e.  _V  |->  { m  e.  ( Base `  ( n Mat  (Poly1 `  r
) ) )  | 
A. i  e.  n  A. j  e.  n  A. k  e.  NN  ( (coe1 `  ( i m j ) ) `  k )  =  ( 0g `  r ) } )
32a1i 11 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  V )  -> ConstPolyMat  =  ( n  e. 
Fin ,  r  e.  _V  |->  { m  e.  ( Base `  (
n Mat  (Poly1 `  r ) ) )  |  A. i  e.  n  A. j  e.  n  A. k  e.  NN  ( (coe1 `  (
i m j ) ) `  k )  =  ( 0g `  r ) } ) )
4 simpl 473 . . . . . . . 8  |-  ( ( n  =  N  /\  r  =  R )  ->  n  =  N )
5 fveq2 6191 . . . . . . . . 9  |-  ( r  =  R  ->  (Poly1 `  r )  =  (Poly1 `  R ) )
65adantl 482 . . . . . . . 8  |-  ( ( n  =  N  /\  r  =  R )  ->  (Poly1 `  r )  =  (Poly1 `  R ) )
74, 6oveq12d 6668 . . . . . . 7  |-  ( ( n  =  N  /\  r  =  R )  ->  ( n Mat  (Poly1 `  r
) )  =  ( N Mat  (Poly1 `  R ) ) )
87fveq2d 6195 . . . . . 6  |-  ( ( n  =  N  /\  r  =  R )  ->  ( Base `  (
n Mat  (Poly1 `  r ) ) )  =  ( Base `  ( N Mat  (Poly1 `  R
) ) ) )
9 cpmat.b . . . . . . 7  |-  B  =  ( Base `  C
)
10 cpmat.c . . . . . . . . 9  |-  C  =  ( N Mat  P )
11 cpmat.p . . . . . . . . . 10  |-  P  =  (Poly1 `  R )
1211oveq2i 6661 . . . . . . . . 9  |-  ( N Mat 
P )  =  ( N Mat  (Poly1 `  R ) )
1310, 12eqtri 2644 . . . . . . . 8  |-  C  =  ( N Mat  (Poly1 `  R
) )
1413fveq2i 6194 . . . . . . 7  |-  ( Base `  C )  =  (
Base `  ( N Mat  (Poly1 `  R ) ) )
159, 14eqtri 2644 . . . . . 6  |-  B  =  ( Base `  ( N Mat  (Poly1 `  R ) ) )
168, 15syl6eqr 2674 . . . . 5  |-  ( ( n  =  N  /\  r  =  R )  ->  ( Base `  (
n Mat  (Poly1 `  r ) ) )  =  B )
17 fveq2 6191 . . . . . . . . . 10  |-  ( r  =  R  ->  ( 0g `  r )  =  ( 0g `  R
) )
1817adantl 482 . . . . . . . . 9  |-  ( ( n  =  N  /\  r  =  R )  ->  ( 0g `  r
)  =  ( 0g
`  R ) )
1918eqeq2d 2632 . . . . . . . 8  |-  ( ( n  =  N  /\  r  =  R )  ->  ( ( (coe1 `  (
i m j ) ) `  k )  =  ( 0g `  r )  <->  ( (coe1 `  ( i m j ) ) `  k
)  =  ( 0g
`  R ) ) )
2019ralbidv 2986 . . . . . . 7  |-  ( ( n  =  N  /\  r  =  R )  ->  ( A. k  e.  NN  ( (coe1 `  (
i m j ) ) `  k )  =  ( 0g `  r )  <->  A. k  e.  NN  ( (coe1 `  (
i m j ) ) `  k )  =  ( 0g `  R ) ) )
214, 20raleqbidv 3152 . . . . . 6  |-  ( ( n  =  N  /\  r  =  R )  ->  ( A. j  e.  n  A. k  e.  NN  ( (coe1 `  (
i m j ) ) `  k )  =  ( 0g `  r )  <->  A. j  e.  N  A. k  e.  NN  ( (coe1 `  (
i m j ) ) `  k )  =  ( 0g `  R ) ) )
224, 21raleqbidv 3152 . . . . 5  |-  ( ( n  =  N  /\  r  =  R )  ->  ( A. i  e.  n  A. j  e.  n  A. k  e.  NN  ( (coe1 `  (
i m j ) ) `  k )  =  ( 0g `  r )  <->  A. i  e.  N  A. j  e.  N  A. k  e.  NN  ( (coe1 `  (
i m j ) ) `  k )  =  ( 0g `  R ) ) )
2316, 22rabeqbidv 3195 . . . 4  |-  ( ( n  =  N  /\  r  =  R )  ->  { m  e.  (
Base `  ( n Mat  (Poly1 `  r ) ) )  |  A. i  e.  n  A. j  e.  n  A. k  e.  NN  ( (coe1 `  (
i m j ) ) `  k )  =  ( 0g `  r ) }  =  { m  e.  B  |  A. i  e.  N  A. j  e.  N  A. k  e.  NN  ( (coe1 `  ( i m j ) ) `  k )  =  ( 0g `  R ) } )
2423adantl 482 . . 3  |-  ( ( ( N  e.  Fin  /\  R  e.  V )  /\  ( n  =  N  /\  r  =  R ) )  ->  { m  e.  ( Base `  ( n Mat  (Poly1 `  r ) ) )  |  A. i  e.  n  A. j  e.  n  A. k  e.  NN  ( (coe1 `  (
i m j ) ) `  k )  =  ( 0g `  r ) }  =  { m  e.  B  |  A. i  e.  N  A. j  e.  N  A. k  e.  NN  ( (coe1 `  ( i m j ) ) `  k )  =  ( 0g `  R ) } )
25 simpl 473 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  V )  ->  N  e.  Fin )
26 elex 3212 . . . 4  |-  ( R  e.  V  ->  R  e.  _V )
2726adantl 482 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  V )  ->  R  e.  _V )
28 fvex 6201 . . . . 5  |-  ( Base `  C )  e.  _V
299, 28eqeltri 2697 . . . 4  |-  B  e. 
_V
30 rabexg 4812 . . . 4  |-  ( B  e.  _V  ->  { m  e.  B  |  A. i  e.  N  A. j  e.  N  A. k  e.  NN  (
(coe1 `  ( i m j ) ) `  k )  =  ( 0g `  R ) }  e.  _V )
3129, 30mp1i 13 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  V )  ->  { m  e.  B  |  A. i  e.  N  A. j  e.  N  A. k  e.  NN  ( (coe1 `  ( i m j ) ) `  k )  =  ( 0g `  R ) }  e.  _V )
323, 24, 25, 27, 31ovmpt2d 6788 . 2  |-  ( ( N  e.  Fin  /\  R  e.  V )  ->  ( N ConstPolyMat  R )  =  { m  e.  B  |  A. i  e.  N  A. j  e.  N  A. k  e.  NN  ( (coe1 `  ( i m j ) ) `  k )  =  ( 0g `  R ) } )
331, 32syl5eq 2668 1  |-  ( ( N  e.  Fin  /\  R  e.  V )  ->  S  =  { m  e.  B  |  A. i  e.  N  A. j  e.  N  A. k  e.  NN  (
(coe1 `  ( i m j ) ) `  k )  =  ( 0g `  R ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   _Vcvv 3200   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Fincfn 7955   NNcn 11020   Basecbs 15857   0gc0g 16100  Poly1cpl1 19547  coe1cco1 19548   Mat cmat 20213   ConstPolyMat ccpmat 20508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-cpmat 20511
This theorem is referenced by:  cpmatpmat  20515  cpmatel  20516  cpmatsubgpmat  20525
  Copyright terms: Public domain W3C validator