MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmatel Structured version   Visualization version   Unicode version

Theorem cpmatel 20516
Description: Property of a constant polynomial matrix. (Contributed by AV, 15-Nov-2019.)
Hypotheses
Ref Expression
cpmat.s  |-  S  =  ( N ConstPolyMat  R )
cpmat.p  |-  P  =  (Poly1 `  R )
cpmat.c  |-  C  =  ( N Mat  P )
cpmat.b  |-  B  =  ( Base `  C
)
Assertion
Ref Expression
cpmatel  |-  ( ( N  e.  Fin  /\  R  e.  V  /\  M  e.  B )  ->  ( M  e.  S  <->  A. i  e.  N  A. j  e.  N  A. k  e.  NN  (
(coe1 `  ( i M j ) ) `  k )  =  ( 0g `  R ) ) )
Distinct variable groups:    i, N, j, k    R, i, j, k    i, M, j, k
Allowed substitution hints:    B( i, j, k)    C( i, j, k)    P( i, j, k)    S( i, j, k)    V( i, j, k)

Proof of Theorem cpmatel
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 cpmat.s . . . . . 6  |-  S  =  ( N ConstPolyMat  R )
2 cpmat.p . . . . . 6  |-  P  =  (Poly1 `  R )
3 cpmat.c . . . . . 6  |-  C  =  ( N Mat  P )
4 cpmat.b . . . . . 6  |-  B  =  ( Base `  C
)
51, 2, 3, 4cpmat 20514 . . . . 5  |-  ( ( N  e.  Fin  /\  R  e.  V )  ->  S  =  { m  e.  B  |  A. i  e.  N  A. j  e.  N  A. k  e.  NN  (
(coe1 `  ( i m j ) ) `  k )  =  ( 0g `  R ) } )
653adant3 1081 . . . 4  |-  ( ( N  e.  Fin  /\  R  e.  V  /\  M  e.  B )  ->  S  =  { m  e.  B  |  A. i  e.  N  A. j  e.  N  A. k  e.  NN  (
(coe1 `  ( i m j ) ) `  k )  =  ( 0g `  R ) } )
76eleq2d 2687 . . 3  |-  ( ( N  e.  Fin  /\  R  e.  V  /\  M  e.  B )  ->  ( M  e.  S  <->  M  e.  { m  e.  B  |  A. i  e.  N  A. j  e.  N  A. k  e.  NN  ( (coe1 `  (
i m j ) ) `  k )  =  ( 0g `  R ) } ) )
8 oveq 6656 . . . . . . . . 9  |-  ( m  =  M  ->  (
i m j )  =  ( i M j ) )
98fveq2d 6195 . . . . . . . 8  |-  ( m  =  M  ->  (coe1 `  ( i m j ) )  =  (coe1 `  ( i M j ) ) )
109fveq1d 6193 . . . . . . 7  |-  ( m  =  M  ->  (
(coe1 `  ( i m j ) ) `  k )  =  ( (coe1 `  ( i M j ) ) `  k ) )
1110eqeq1d 2624 . . . . . 6  |-  ( m  =  M  ->  (
( (coe1 `  ( i m j ) ) `  k )  =  ( 0g `  R )  <-> 
( (coe1 `  ( i M j ) ) `  k )  =  ( 0g `  R ) ) )
1211ralbidv 2986 . . . . 5  |-  ( m  =  M  ->  ( A. k  e.  NN  ( (coe1 `  ( i m j ) ) `  k )  =  ( 0g `  R )  <->  A. k  e.  NN  ( (coe1 `  ( i M j ) ) `  k )  =  ( 0g `  R ) ) )
13122ralbidv 2989 . . . 4  |-  ( m  =  M  ->  ( A. i  e.  N  A. j  e.  N  A. k  e.  NN  ( (coe1 `  ( i m j ) ) `  k )  =  ( 0g `  R )  <->  A. i  e.  N  A. j  e.  N  A. k  e.  NN  ( (coe1 `  ( i M j ) ) `  k )  =  ( 0g `  R ) ) )
1413elrab 3363 . . 3  |-  ( M  e.  { m  e.  B  |  A. i  e.  N  A. j  e.  N  A. k  e.  NN  ( (coe1 `  (
i m j ) ) `  k )  =  ( 0g `  R ) }  <->  ( M  e.  B  /\  A. i  e.  N  A. j  e.  N  A. k  e.  NN  ( (coe1 `  (
i M j ) ) `  k )  =  ( 0g `  R ) ) )
157, 14syl6bb 276 . 2  |-  ( ( N  e.  Fin  /\  R  e.  V  /\  M  e.  B )  ->  ( M  e.  S  <->  ( M  e.  B  /\  A. i  e.  N  A. j  e.  N  A. k  e.  NN  (
(coe1 `  ( i M j ) ) `  k )  =  ( 0g `  R ) ) ) )
16153anibar 1229 1  |-  ( ( N  e.  Fin  /\  R  e.  V  /\  M  e.  B )  ->  ( M  e.  S  <->  A. i  e.  N  A. j  e.  N  A. k  e.  NN  (
(coe1 `  ( i M j ) ) `  k )  =  ( 0g `  R ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   ` cfv 5888  (class class class)co 6650   Fincfn 7955   NNcn 11020   Basecbs 15857   0gc0g 16100  Poly1cpl1 19547  coe1cco1 19548   Mat cmat 20213   ConstPolyMat ccpmat 20508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-cpmat 20511
This theorem is referenced by:  cpmatelimp  20517  cpmatel2  20518  1elcpmat  20520  cpmatmcl  20524  m2cpm  20546
  Copyright terms: Public domain W3C validator