MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmatelimp Structured version   Visualization version   Unicode version

Theorem cpmatelimp 20517
Description: Implication of a set being a constant polynomial matrix. (Contributed by AV, 18-Nov-2019.)
Hypotheses
Ref Expression
cpmat.s  |-  S  =  ( N ConstPolyMat  R )
cpmat.p  |-  P  =  (Poly1 `  R )
cpmat.c  |-  C  =  ( N Mat  P )
cpmat.b  |-  B  =  ( Base `  C
)
Assertion
Ref Expression
cpmatelimp  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( M  e.  S  ->  ( M  e.  B  /\  A. i  e.  N  A. j  e.  N  A. k  e.  NN  ( (coe1 `  ( i M j ) ) `  k )  =  ( 0g `  R ) ) ) )
Distinct variable groups:    i, N, j, k    R, i, j, k    i, M, j, k
Allowed substitution hints:    B( i, j, k)    C( i, j, k)    P( i, j, k)    S( i, j, k)

Proof of Theorem cpmatelimp
StepHypRef Expression
1 cpmat.s . . . . 5  |-  S  =  ( N ConstPolyMat  R )
2 cpmat.p . . . . 5  |-  P  =  (Poly1 `  R )
3 cpmat.c . . . . 5  |-  C  =  ( N Mat  P )
4 cpmat.b . . . . 5  |-  B  =  ( Base `  C
)
51, 2, 3, 4cpmatpmat 20515 . . . 4  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  S )  ->  M  e.  B )
653expa 1265 . . 3  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  M  e.  S
)  ->  M  e.  B )
71, 2, 3, 4cpmatel 20516 . . . . . 6  |-  ( ( N  e.  Fin  /\  R  e.  Ring  /\  M  e.  B )  ->  ( M  e.  S  <->  A. i  e.  N  A. j  e.  N  A. k  e.  NN  ( (coe1 `  (
i M j ) ) `  k )  =  ( 0g `  R ) ) )
873expa 1265 . . . . 5  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  M  e.  B
)  ->  ( M  e.  S  <->  A. i  e.  N  A. j  e.  N  A. k  e.  NN  ( (coe1 `  ( i M j ) ) `  k )  =  ( 0g `  R ) ) )
98biimpd 219 . . . 4  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  M  e.  B
)  ->  ( M  e.  S  ->  A. i  e.  N  A. j  e.  N  A. k  e.  NN  ( (coe1 `  (
i M j ) ) `  k )  =  ( 0g `  R ) ) )
109impancom 456 . . 3  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  M  e.  S
)  ->  ( M  e.  B  ->  A. i  e.  N  A. j  e.  N  A. k  e.  NN  ( (coe1 `  (
i M j ) ) `  k )  =  ( 0g `  R ) ) )
116, 10jcai 559 . 2  |-  ( ( ( N  e.  Fin  /\  R  e.  Ring )  /\  M  e.  S
)  ->  ( M  e.  B  /\  A. i  e.  N  A. j  e.  N  A. k  e.  NN  ( (coe1 `  (
i M j ) ) `  k )  =  ( 0g `  R ) ) )
1211ex 450 1  |-  ( ( N  e.  Fin  /\  R  e.  Ring )  -> 
( M  e.  S  ->  ( M  e.  B  /\  A. i  e.  N  A. j  e.  N  A. k  e.  NN  ( (coe1 `  ( i M j ) ) `  k )  =  ( 0g `  R ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   ` cfv 5888  (class class class)co 6650   Fincfn 7955   NNcn 11020   Basecbs 15857   0gc0g 16100   Ringcrg 18547  Poly1cpl1 19547  coe1cco1 19548   Mat cmat 20213   ConstPolyMat ccpmat 20508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-cpmat 20511
This theorem is referenced by:  cpmatmcllem  20523  m2cpminvid2lem  20559
  Copyright terms: Public domain W3C validator