| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbopab | Structured version Visualization version Unicode version | ||
| Description: Move substitution into a class abstraction. Version of csbopabgALT 5009 without a sethood antecedent but depending on more axioms. (Contributed by NM, 6-Aug-2007.) (Revised by NM, 23-Aug-2018.) |
| Ref | Expression |
|---|---|
| csbopab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1 3536 |
. . . 4
| |
| 2 | dfsbcq2 3438 |
. . . . 5
| |
| 3 | 2 | opabbidv 4716 |
. . . 4
|
| 4 | 1, 3 | eqeq12d 2637 |
. . 3
|
| 5 | vex 3203 |
. . . 4
| |
| 6 | nfs1v 2437 |
. . . . 5
| |
| 7 | 6 | nfopab 4718 |
. . . 4
|
| 8 | sbequ12 2111 |
. . . . 5
| |
| 9 | 8 | opabbidv 4716 |
. . . 4
|
| 10 | 5, 7, 9 | csbief 3558 |
. . 3
|
| 11 | 4, 10 | vtoclg 3266 |
. 2
|
| 12 | csbprc 3980 |
. . 3
| |
| 13 | sbcex 3445 |
. . . . . . 7
| |
| 14 | 13 | con3i 150 |
. . . . . 6
|
| 15 | 14 | nexdv 1864 |
. . . . 5
|
| 16 | 15 | nexdv 1864 |
. . . 4
|
| 17 | opabn0 5006 |
. . . . 5
| |
| 18 | 17 | necon1bbii 2843 |
. . . 4
|
| 19 | 16, 18 | sylib 208 |
. . 3
|
| 20 | 12, 19 | eqtr4d 2659 |
. 2
|
| 21 | 11, 20 | pm2.61i 176 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-opab 4713 |
| This theorem is referenced by: csbmpt12 5010 csbcnv 5306 |
| Copyright terms: Public domain | W3C validator |