MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbopg Structured version   Visualization version   Unicode version

Theorem csbopg 4420
Description: Distribution of class substitution over ordered pairs. (Contributed by Drahflow, 25-Sep-2015.) (Revised by Mario Carneiro, 29-Oct-2015.) (Revised by ML, 25-Oct-2020.)
Assertion
Ref Expression
csbopg  |-  ( A  e.  V  ->  [_ A  /  x ]_ <. C ,  D >.  =  <. [_ A  /  x ]_ C ,  [_ A  /  x ]_ D >. )

Proof of Theorem csbopg
StepHypRef Expression
1 csbif 4138 . . 3  |-  [_ A  /  x ]_ if ( ( C  e.  _V  /\  D  e.  _V ) ,  { { C } ,  { C ,  D } } ,  (/) )  =  if ( [. A  /  x ]. ( C  e.  _V  /\  D  e.  _V ) ,  [_ A  /  x ]_ { { C } ,  { C ,  D } } ,  [_ A  /  x ]_ (/) )
2 sbcan 3478 . . . . 5  |-  ( [. A  /  x ]. ( C  e.  _V  /\  D  e.  _V )  <->  ( [. A  /  x ]. C  e.  _V  /\  [. A  /  x ]. D  e. 
_V ) )
3 sbcel1g 3987 . . . . . 6  |-  ( A  e.  V  ->  ( [. A  /  x ]. C  e.  _V  <->  [_ A  /  x ]_ C  e.  _V )
)
4 sbcel1g 3987 . . . . . 6  |-  ( A  e.  V  ->  ( [. A  /  x ]. D  e.  _V  <->  [_ A  /  x ]_ D  e.  _V )
)
53, 4anbi12d 747 . . . . 5  |-  ( A  e.  V  ->  (
( [. A  /  x ]. C  e.  _V  /\ 
[. A  /  x ]. D  e.  _V ) 
<->  ( [_ A  /  x ]_ C  e.  _V  /\ 
[_ A  /  x ]_ D  e.  _V ) ) )
62, 5syl5bb 272 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( C  e.  _V  /\  D  e.  _V )  <->  (
[_ A  /  x ]_ C  e.  _V  /\ 
[_ A  /  x ]_ D  e.  _V ) ) )
7 csbprg 4244 . . . . 5  |-  ( A  e.  V  ->  [_ A  /  x ]_ { { C } ,  { C ,  D } }  =  { [_ A  /  x ]_ { C } ,  [_ A  /  x ]_ { C ,  D } } )
8 csbsng 4243 . . . . . 6  |-  ( A  e.  V  ->  [_ A  /  x ]_ { C }  =  { [_ A  /  x ]_ C }
)
9 csbprg 4244 . . . . . 6  |-  ( A  e.  V  ->  [_ A  /  x ]_ { C ,  D }  =  { [_ A  /  x ]_ C ,  [_ A  /  x ]_ D }
)
108, 9preq12d 4276 . . . . 5  |-  ( A  e.  V  ->  { [_ A  /  x ]_ { C } ,  [_ A  /  x ]_ { C ,  D } }  =  { { [_ A  /  x ]_ C } ,  { [_ A  /  x ]_ C ,  [_ A  /  x ]_ D } } )
117, 10eqtrd 2656 . . . 4  |-  ( A  e.  V  ->  [_ A  /  x ]_ { { C } ,  { C ,  D } }  =  { { [_ A  /  x ]_ C } ,  { [_ A  /  x ]_ C ,  [_ A  /  x ]_ D } } )
12 csbconstg 3546 . . . 4  |-  ( A  e.  V  ->  [_ A  /  x ]_ (/)  =  (/) )
136, 11, 12ifbieq12d 4113 . . 3  |-  ( A  e.  V  ->  if ( [. A  /  x ]. ( C  e.  _V  /\  D  e.  _V ) ,  [_ A  /  x ]_ { { C } ,  { C ,  D } } ,  [_ A  /  x ]_ (/) )  =  if ( ( [_ A  /  x ]_ C  e.  _V  /\  [_ A  /  x ]_ D  e. 
_V ) ,  { { [_ A  /  x ]_ C } ,  { [_ A  /  x ]_ C ,  [_ A  /  x ]_ D } } ,  (/) ) )
141, 13syl5eq 2668 . 2  |-  ( A  e.  V  ->  [_ A  /  x ]_ if ( ( C  e.  _V  /\  D  e.  _V ) ,  { { C } ,  { C ,  D } } ,  (/) )  =  if ( ( [_ A  /  x ]_ C  e.  _V  /\  [_ A  /  x ]_ D  e. 
_V ) ,  { { [_ A  /  x ]_ C } ,  { [_ A  /  x ]_ C ,  [_ A  /  x ]_ D } } ,  (/) ) )
15 dfopif 4399 . . 3  |-  <. C ,  D >.  =  if ( ( C  e.  _V  /\  D  e.  _V ) ,  { { C } ,  { C ,  D } } ,  (/) )
1615csbeq2i 3993 . 2  |-  [_ A  /  x ]_ <. C ,  D >.  =  [_ A  /  x ]_ if ( ( C  e.  _V  /\  D  e.  _V ) ,  { { C } ,  { C ,  D } } ,  (/) )
17 dfopif 4399 . 2  |-  <. [_ A  /  x ]_ C ,  [_ A  /  x ]_ D >.  =  if ( ( [_ A  /  x ]_ C  e. 
_V  /\  [_ A  /  x ]_ D  e.  _V ) ,  { { [_ A  /  x ]_ C } ,  { [_ A  /  x ]_ C ,  [_ A  /  x ]_ D } } ,  (/) )
1814, 16, 173eqtr4g 2681 1  |-  ( A  e.  V  ->  [_ A  /  x ]_ <. C ,  D >.  =  <. [_ A  /  x ]_ C ,  [_ A  /  x ]_ D >. )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   [.wsbc 3435   [_csb 3533   (/)c0 3915   ifcif 4086   {csn 4177   {cpr 4179   <.cop 4183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184
This theorem is referenced by:  esum2dlem  30154  csbfinxpg  33225
  Copyright terms: Public domain W3C validator