MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbwrdg Structured version   Visualization version   Unicode version

Theorem csbwrdg 13334
Description: Class substitution for the symbols of a word. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
Assertion
Ref Expression
csbwrdg  |-  ( S  e.  V  ->  [_ S  /  x ]_Word  x  = Word  S )
Distinct variable groups:    x, S    x, V

Proof of Theorem csbwrdg
Dummy variables  l  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-word 13299 . . 3  |- Word  x  =  { w  |  E. l  e.  NN0  w : ( 0..^ l ) --> x }
21csbeq2i 3993 . 2  |-  [_ S  /  x ]_Word  x  =  [_ S  /  x ]_ { w  |  E. l  e.  NN0  w : ( 0..^ l ) --> x }
3 sbcrex 3514 . . . . 5  |-  ( [. S  /  x ]. E. l  e.  NN0  w : ( 0..^ l ) --> x  <->  E. l  e.  NN0  [. S  /  x ]. w : ( 0..^ l ) --> x )
4 sbcfg 6043 . . . . . . 7  |-  ( S  e.  V  ->  ( [. S  /  x ]. w : ( 0..^ l ) --> x  <->  [_ S  /  x ]_ w : [_ S  /  x ]_ (
0..^ l ) --> [_ S  /  x ]_ x ) )
5 csbconstg 3546 . . . . . . . 8  |-  ( S  e.  V  ->  [_ S  /  x ]_ w  =  w )
6 csbconstg 3546 . . . . . . . 8  |-  ( S  e.  V  ->  [_ S  /  x ]_ ( 0..^ l )  =  ( 0..^ l ) )
7 csbvarg 4003 . . . . . . . 8  |-  ( S  e.  V  ->  [_ S  /  x ]_ x  =  S )
85, 6, 7feq123d 6034 . . . . . . 7  |-  ( S  e.  V  ->  ( [_ S  /  x ]_ w : [_ S  /  x ]_ ( 0..^ l ) --> [_ S  /  x ]_ x  <->  w :
( 0..^ l ) --> S ) )
94, 8bitrd 268 . . . . . 6  |-  ( S  e.  V  ->  ( [. S  /  x ]. w : ( 0..^ l ) --> x  <->  w :
( 0..^ l ) --> S ) )
109rexbidv 3052 . . . . 5  |-  ( S  e.  V  ->  ( E. l  e.  NN0  [. S  /  x ]. w : ( 0..^ l ) --> x  <->  E. l  e.  NN0  w : ( 0..^ l ) --> S ) )
113, 10syl5bb 272 . . . 4  |-  ( S  e.  V  ->  ( [. S  /  x ]. E. l  e.  NN0  w : ( 0..^ l ) --> x  <->  E. l  e.  NN0  w : ( 0..^ l ) --> S ) )
1211abbidv 2741 . . 3  |-  ( S  e.  V  ->  { w  |  [. S  /  x ]. E. l  e.  NN0  w : ( 0..^ l ) --> x }  =  { w  |  E. l  e.  NN0  w : ( 0..^ l ) --> S } )
13 csbab 4008 . . 3  |-  [_ S  /  x ]_ { w  |  E. l  e.  NN0  w : ( 0..^ l ) --> x }  =  { w  |  [. S  /  x ]. E. l  e.  NN0  w : ( 0..^ l ) --> x }
14 df-word 13299 . . 3  |- Word  S  =  { w  |  E. l  e.  NN0  w : ( 0..^ l ) --> S }
1512, 13, 143eqtr4g 2681 . 2  |-  ( S  e.  V  ->  [_ S  /  x ]_ { w  |  E. l  e.  NN0  w : ( 0..^ l ) --> x }  = Word  S )
162, 15syl5eq 2668 1  |-  ( S  e.  V  ->  [_ S  /  x ]_Word  x  = Word  S )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   {cab 2608   E.wrex 2913   [.wsbc 3435   [_csb 3533   -->wf 5884  (class class class)co 6650   0cc0 9936   NN0cn0 11292  ..^cfzo 12465  Word cword 13291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-fun 5890  df-fn 5891  df-f 5892  df-word 13299
This theorem is referenced by:  elovmpt2wrd  13347
  Copyright terms: Public domain W3C validator