![]() |
Metamath
Proof Explorer Theorem List (p. 134 of 426) | < Previous Next > |
Browser slow? Try the
Unicode version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27775) |
![]() (27776-29300) |
![]() (29301-42551) |
Type | Label | Description |
---|---|---|
Statement | ||
Definition | df-concat 13301* | Define the concatenation operator which combines two words. Definition in section 9.1 of [AhoHopUll] p. 318. (Contributed by FL, 14-Jan-2014.) (Revised by Stefan O'Rear, 15-Aug-2015.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Definition | df-s1 13302 | Define the canonical injection from symbols to words. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Definition | df-substr 13303* | Define an operation which extracts portions of words. Definition in section 9.1 of [AhoHopUll] p. 318. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Definition | df-splice 13304* | Define an operation which replaces portions of words. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Definition | df-reverse 13305* | Define an operation which reverses the order of symbols in a word. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Definition | df-reps 13306* | Definition to construct a word consisting of one repeated symbol, often called "repeated symbol word" for short in the following. (Contributed by Alexander van der Vekens, 4-Nov-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | iswrd 13307* | Property of being a word over a set with a quantifier over the length. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 13-May-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | wrdval 13308* | Value of the set of words over a set. (Contributed by Stefan O'Rear, 10-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | iswrdi 13309 | A zero-based sequence is a word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | wrdf 13310 | A word is a zero-based sequence with a recoverable upper limit. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | iswrdb 13311 | A word over an alphabet is a function of an open range of nonnegative integers (of length equal to the length of the word) into the alphabet. (Contributed by Alexander van der Vekens, 30-Jul-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | wrddm 13312 | The indices of a word (i.e. its domain regarded as function) are elements of an open range of nonnegative integers (of length equal to the length of the word). (Contributed by AV, 2-May-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | sswrd 13313 | The set of words respects ordering on the base set. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 13-May-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | snopiswrd 13314 | A singleton of an ordered pair (with 0 as first component) is a word. (Contributed by AV, 23-Nov-2018.) (Proof shortened by AV, 18-Apr-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | wrdexg 13315 | The set of words over a set is a set. (Contributed by Mario Carneiro, 26-Feb-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | wrdexb 13316 | The set of words over a set is a set, bidirectional version. (Contributed by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 23-Nov-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | wrdexi 13317 | The set of words over a set is a set, inference form. (Contributed by AV, 23-May-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | wrdsymbcl 13318 | A symbol within a word over an alphabet belongs to the alphabet. (Contributed by Alexander van der Vekens, 28-Jun-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | wrdfn 13319 | A word is a function with a zero-based sequence of integers as domain. (Contributed by Alexander van der Vekens, 13-Apr-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | wrdv 13320 | A word over an alphabet is a word over the universal class. (Contributed by AV, 8-Feb-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | wrdlndm 13321 | The length of a word is not in the domain of the word (regarded as function). (Contributed by AV, 3-Mar-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | iswrdsymb 13322* | An arbitrary word is a word over an alphabet if all of its symbols belong to the alphabet. (Contributed by AV, 23-Jan-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | wrdfin 13323 | A word is a finite set. (Contributed by Stefan O'Rear, 2-Nov-2015.) (Proof shortened by AV, 18-Nov-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | lencl 13324 | The length of a word is a nonnegative integer. This corresponds to the definition in section 9.1 of [AhoHopUll] p. 318. (Contributed by Stefan O'Rear, 27-Aug-2015.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | lennncl 13325 | The length of a nonempty word is a positive integer. (Contributed by Mario Carneiro, 1-Oct-2015.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | wrdffz 13326 | A word is a function from a finite interval of integers. (Contributed by AV, 10-Feb-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | wrdeq 13327 | Equality theorem for the set of words. (Contributed by Mario Carneiro, 26-Feb-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | wrdeqi 13328 | Equality theorem for the set of words, inference form. (Contributed by AV, 23-May-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | iswrddm0 13329 | A function with empty domain is a word. (Contributed by AV, 13-Oct-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | wrd0 13330 | The empty set is a word (the empty word, frequently denoted ε in this context). This corresponds to the definition in section 9.1 of [AhoHopUll] p. 318. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 13-May-2020.) |
![]() ![]() ![]() ![]() | ||
Theorem | 0wrd0 13331 | The empty word is the only word over an empty alphabet. (Contributed by AV, 25-Oct-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ffz0iswrd 13332 | A sequence with zero-based indices is a word. (Contributed by AV, 31-Jan-2018.) (Proof shortened by AV, 13-Oct-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | nfwrd 13333 |
Hypothesis builder for Word ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | csbwrdg 13334* | Class substitution for the symbols of a word. (Contributed by Alexander van der Vekens, 15-Jul-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | wrdnval 13335* | Words of a fixed length are mappings from a fixed half-open integer interval. (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Proof shortened by AV, 13-May-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | wrdmap 13336 | Words as a mapping. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | hashwrdn 13337* | If there is only a finite number of symbols, the number of words of a fixed length over these sysmbols is the number of these symbols raised to the power of the length. (Contributed by Alexander van der Vekens, 25-Mar-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | wrdnfi 13338* | If there is only a finite number of symbols, the number of words of a fixed length over these symbols is also finite. (Contributed by Alexander van der Vekens, 25-Mar-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | wrdsymb0 13339 | A symbol at a position "outside" of a word. (Contributed by Alexander van der Vekens, 26-May-2018.) (Proof shortened by AV, 2-May-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | wrdlenge1n0 13340 | A word with length at least 1 is not empty. (Contributed by AV, 14-Oct-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | wrdlenge2n0 13341 | A word with length at least 2 is not empty. (Contributed by AV, 18-Jun-2018.) (Proof shortened by AV, 14-Oct-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | wrdsymb1 13342 | The first symbol of a nonempty word over an alphabet belongs to the alphabet. (Contributed by Alexander van der Vekens, 28-Jun-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | wrdlen1 13343* | A word of length 1 starts with a symbol. (Contributed by AV, 20-Jul-2018.) (Proof shortened by AV, 19-Oct-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | fstwrdne 13344 | The first symbol of a nonempty word is element of the alphabet for the word. (Contributed by AV, 28-Sep-2018.) (Proof shortened by AV, 14-Oct-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | fstwrdne0 13345 | The first symbol of a nonempty word is element of the alphabet for the word. (Contributed by AV, 29-Sep-2018.) (Proof shortened by AV, 14-Oct-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | eqwrd 13346* | Two words are equal iff they have the same length and the same symbol at each position. (Contributed by AV, 13-Apr-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | elovmpt2wrd 13347* |
Implications for the value of an operation defined by the maps-to
notation with a class abstration of words as a result having an element.
Note that ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | elovmptnn0wrd 13348* |
Implications for the value of an operation defined by the maps-to
notation with a function of nonnegative integers into a class
abstraction of words as a result having an element. Note that ![]() ![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | wrdred1 13349 | A word truncated by a symbol is a word. (Contributed by AV, 29-Jan-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | wrdred1hash 13350 | The length of a word truncated by a symbol. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 29-Jan-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | lsw 13351 | Extract the last symbol of a word. May be not meaningful for other sets which are not words. (Contributed by Alexander van der Vekens, 18-Mar-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | lsw0 13352 | The last symbol of an empty word does not exist. (Contributed by Alexander van der Vekens, 19-Mar-2018.) (Proof shortened by AV, 2-May-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | lsw0g 13353 | The last symbol of an empty word does not exist. (Contributed by Alexander van der Vekens, 11-Nov-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | lsw1 13354 | The last symbol of a word of length 1 is the first symbol of this word. (Contributed by Alexander van der Vekens, 19-Mar-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | lswcl 13355 | Closure of the last symbol: the last symbol of a not empty word belongs to the alphabet for the word. (Contributed by AV, 2-Aug-2018.) (Proof shortened by AV, 29-Apr-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | lswlgt0cl 13356 | The last symbol of a nonempty word is element of the alphabet for the word. (Contributed by Alexander van der Vekens, 1-Oct-2018.) (Proof shortened by AV, 29-Apr-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ccatfn 13357 | The concatenation operator is a two-argument function. (Contributed by Mario Carneiro, 27-Sep-2015.) (Proof shortened by AV, 29-Apr-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ccatfval 13358* | Value of the concatenation operator. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ccatcl 13359 | The concatenation of two words is a word. (Contributed by FL, 2-Feb-2014.) (Proof shortened by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 29-Apr-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ccatlen 13360 | The length of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ccatval1 13361 | Value of a symbol in the left half of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 22-Sep-2015.) (Proof shortened by AV, 30-Apr-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ccatval2 13362 | Value of a symbol in the right half of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 22-Sep-2015.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ccatval3 13363 | Value of a symbol in the right half of a concatenated word, using an index relative to the subword. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Proof shortened by AV, 30-Apr-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | elfzelfzccat 13364 | An element of a finite set of sequential integers up to the length of a word is an element of an extended finite set of sequential integers up to the length of a concatenation of this word with another word. (Contributed by Alexander van der Vekens, 28-Mar-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ccatvalfn 13365 | The concatenation of two words is a function over the half-open integer range having the sum of the lengths of the word as length. (Contributed by Alexander van der Vekens, 30-Mar-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ccatsymb 13366 | The symbol at a given position in a concatenated word. (Contributed by AV, 26-May-2018.) (Proof shortened by AV, 24-Nov-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ccatfv0 13367 | The first symbol of a concatenation of two words is the first symbol of the first word if the first word is not empty. (Contributed by Alexander van der Vekens, 22-Sep-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ccatval1lsw 13368 | The last symbol of the left (nonempty) half of a concatenated word. (Contributed by Alexander van der Vekens, 3-Oct-2018.) (Proof shortened by AV, 1-May-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ccatlid 13369 | Concatenation of a word by the empty word on the left. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 1-May-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ccatrid 13370 | Concatenation of a word by the empty word on the right. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 1-May-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ccatass 13371 | Associative law for concatenation of words. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ccatrn 13372 | The range of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | lswccatn0lsw 13373 | The last symbol of a word concatenated with a nonempty word is the last symbol of the nonempty word. (Contributed by AV, 22-Oct-2018.) (Proof shortened by AV, 1-May-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | lswccat0lsw 13374 | The last symbol of a word concatenated with the empty word is the last symbol of the word. (Contributed by AV, 22-Oct-2018.) (Proof shortened by AV, 1-May-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ccatalpha 13375 | A concatenation of two arbitrary words is a word over an alphabet iff the symbols of both words belong to the alphabet. (Contributed by AV, 28-Feb-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ccatrcl1 13376 | Reverse closure of a concatenation: If the concatenation of two arbitrary words is a word over an alphabet then the symbols of the first word belong to the alphabet. (Contributed by AV, 3-Mar-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ids1 13377 | Identity function protection for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | s1val 13378 | Value of a single-symbol word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | s1rn 13379 | The range of a single-symbol word. (Contributed by Mario Carneiro, 18-Jul-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | s1eq 13380 | Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | s1eqd 13381 | Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | s1cl 13382 | A singleton word is a word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 23-Nov-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | s1cld 13383 | A singleton word is a word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | s1cli 13384 | A singleton word is a word. (Contributed by Mario Carneiro, 26-Feb-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | s1len 13385 | Length of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | s1nz 13386 | A singleton word is not the empty string. (Contributed by Mario Carneiro, 27-Feb-2016.) (Proof shortened by Kyle Wyonch, 18-Jul-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | s1nzOLD 13387 | Obsolete proof of s1nz 13386 as of 18-Jul-2021. A singleton word is not the empty string. (Contributed by Mario Carneiro, 27-Feb-2016.) (New usage is discouraged.) (Proof modification is discouraged.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | s1dm 13388 | The domain of a singleton word is a singleton. (Contributed by AV, 9-Jan-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | s1dmALT 13389 |
Alternate version of s1dm 13388, having a shorter proof, but requiring that
![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | s1fv 13390 | Sole symbol of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | lsws1 13391 | The last symbol of a singleton word is its symbol. (Contributed by AV, 22-Oct-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | eqs1 13392 | A word of length 1 is a singleton word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Proof shortened by AV, 1-May-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | wrdl1exs1 13393* | A word of length 1 is a singleton word. (Contributed by AV, 24-Jan-2021.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | wrdl1s1 13394 | A word of length 1 is a singleton word consisting of the first symbol of the word. (Contributed by AV, 22-Jul-2018.) (Proof shortened by AV, 14-Oct-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | s111 13395 | The singleton word function is injective. (Contributed by Mario Carneiro, 1-Oct-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ccatws1cl 13396 | The concatenation of a word with a singleton word is a word. (Contributed by Alexander van der Vekens, 22-Sep-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ccat2s1cl 13397 | The concatenation of two singleton words is a word. (Contributed by Alexander van der Vekens, 22-Sep-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ccatws1len 13398 | The length of the concatenation of a word with a singleton word. (Contributed by Alexander van der Vekens, 22-Sep-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | wrdlenccats1lenm1 13399 | The length of a word is the length of the word concatenated with a singleton word minus 1. (Contributed by AV, 28-Jun-2018.) (Proof shortened by AV, 1-May-2020.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | ||
Theorem | ccat2s1len 13400 | The length of the concatenation of two singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018.) |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |