HomeHome Metamath Proof Explorer
Theorem List (p. 134 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 13301-13400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Definitiondf-concat 13301* Define the concatenation operator which combines two words. Definition in section 9.1 of [AhoHopUll] p. 318. (Contributed by FL, 14-Jan-2014.) (Revised by Stefan O'Rear, 15-Aug-2015.)
 |- ++ 
 =  ( s  e. 
 _V ,  t  e. 
 _V  |->  ( x  e.  ( 0..^ ( ( # `  s )  +  ( # `  t ) ) )  |->  if ( x  e.  ( 0..^ ( # `  s ) ) ,  ( s `
  x ) ,  ( t `  ( x  -  ( # `  s
 ) ) ) ) ) )
 
Definitiondf-s1 13302 Define the canonical injection from symbols to words. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
 |- 
 <" A ">  =  { <. 0 ,  (  _I  `  A ) >. }
 
Definitiondf-substr 13303* Define an operation which extracts portions of words. Definition in section 9.1 of [AhoHopUll] p. 318. (Contributed by Stefan O'Rear, 15-Aug-2015.)
 |- substr  =  ( s  e.  _V ,  b  e.  ( ZZ  X.  ZZ )  |->  if ( ( ( 1st `  b )..^ ( 2nd `  b ) )  C_  dom  s ,  ( x  e.  ( 0..^ ( ( 2nd `  b
 )  -  ( 1st `  b ) ) ) 
 |->  ( s `  ( x  +  ( 1st `  b ) ) ) ) ,  (/) ) )
 
Definitiondf-splice 13304* Define an operation which replaces portions of words. (Contributed by Stefan O'Rear, 15-Aug-2015.)
 |- splice  =  ( s  e.  _V ,  b  e.  _V  |->  ( ( ( s substr  <. 0 ,  ( 1st `  ( 1st `  b
 ) ) >. ) ++  ( 2nd `  b ) ) ++  ( s substr  <. ( 2nd `  ( 1st `  b
 ) ) ,  ( # `
  s ) >. ) ) )
 
Definitiondf-reverse 13305* Define an operation which reverses the order of symbols in a word. (Contributed by Stefan O'Rear, 26-Aug-2015.)
 |- reverse  =  ( s  e.  _V  |->  ( x  e.  (
 0..^ ( # `  s
 ) )  |->  ( s `
  ( ( ( # `  s )  -  1 )  -  x ) ) ) )
 
Definitiondf-reps 13306* Definition to construct a word consisting of one repeated symbol, often called "repeated symbol word" for short in the following. (Contributed by Alexander van der Vekens, 4-Nov-2018.)
 |- repeatS  =  ( s  e.  _V ,  n  e.  NN0  |->  ( x  e.  ( 0..^ n )  |->  s ) )
 
Theoremiswrd 13307* Property of being a word over a set with a quantifier over the length. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 13-May-2020.)
 |-  ( W  e. Word  S  <->  E. l  e.  NN0  W : ( 0..^ l ) --> S )
 
Theoremwrdval 13308* Value of the set of words over a set. (Contributed by Stefan O'Rear, 10-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
 |-  ( S  e.  V  -> Word 
 S  =  U_ l  e.  NN0  ( S  ^m  ( 0..^ l ) ) )
 
Theoremiswrdi 13309 A zero-based sequence is a word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
 |-  ( W : ( 0..^ L ) --> S  ->  W  e. Word  S )
 
Theoremwrdf 13310 A word is a zero-based sequence with a recoverable upper limit. (Contributed by Stefan O'Rear, 15-Aug-2015.)
 |-  ( W  e. Word  S  ->  W : ( 0..^ ( # `  W ) ) --> S )
 
Theoremiswrdb 13311 A word over an alphabet is a function of an open range of nonnegative integers (of length equal to the length of the word) into the alphabet. (Contributed by Alexander van der Vekens, 30-Jul-2018.)
 |-  ( W  e. Word  S  <->  W : ( 0..^ ( # `  W ) ) --> S )
 
Theoremwrddm 13312 The indices of a word (i.e. its domain regarded as function) are elements of an open range of nonnegative integers (of length equal to the length of the word). (Contributed by AV, 2-May-2020.)
 |-  ( W  e. Word  S  ->  dom  W  =  ( 0..^ ( # `  W ) ) )
 
Theoremsswrd 13313 The set of words respects ordering on the base set. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 13-May-2020.)
 |-  ( S  C_  T  -> Word 
 S  C_ Word  T )
 
Theoremsnopiswrd 13314 A singleton of an ordered pair (with 0 as first component) is a word. (Contributed by AV, 23-Nov-2018.) (Proof shortened by AV, 18-Apr-2021.)
 |-  ( S  e.  V  ->  { <. 0 ,  S >. }  e. Word  V )
 
Theoremwrdexg 13315 The set of words over a set is a set. (Contributed by Mario Carneiro, 26-Feb-2016.)
 |-  ( S  e.  V  -> Word 
 S  e.  _V )
 
Theoremwrdexb 13316 The set of words over a set is a set, bidirectional version. (Contributed by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 23-Nov-2018.)
 |-  ( S  e.  _V  <-> Word  S  e.  _V )
 
Theoremwrdexi 13317 The set of words over a set is a set, inference form. (Contributed by AV, 23-May-2021.)
 |-  S  e.  _V   =>    |- Word  S  e.  _V
 
Theoremwrdsymbcl 13318 A symbol within a word over an alphabet belongs to the alphabet. (Contributed by Alexander van der Vekens, 28-Jun-2018.)
 |-  ( ( W  e. Word  V 
 /\  I  e.  (
 0..^ ( # `  W ) ) )  ->  ( W `  I )  e.  V )
 
Theoremwrdfn 13319 A word is a function with a zero-based sequence of integers as domain. (Contributed by Alexander van der Vekens, 13-Apr-2018.)
 |-  ( W  e. Word  S  ->  W  Fn  ( 0..^ ( # `  W ) ) )
 
Theoremwrdv 13320 A word over an alphabet is a word over the universal class. (Contributed by AV, 8-Feb-2021.)
 |-  ( W  e. Word  V  ->  W  e. Word  _V )
 
Theoremwrdlndm 13321 The length of a word is not in the domain of the word (regarded as function). (Contributed by AV, 3-Mar-2021.)
 |-  ( W  e. Word  V  ->  ( # `  W )  e/  dom  W )
 
Theoremiswrdsymb 13322* An arbitrary word is a word over an alphabet if all of its symbols belong to the alphabet. (Contributed by AV, 23-Jan-2021.)
 |-  ( ( W  e. Word  _V 
 /\  A. i  e.  (
 0..^ ( # `  W ) ) ( W `
  i )  e.  V )  ->  W  e. Word  V )
 
Theoremwrdfin 13323 A word is a finite set. (Contributed by Stefan O'Rear, 2-Nov-2015.) (Proof shortened by AV, 18-Nov-2018.)
 |-  ( W  e. Word  S  ->  W  e.  Fin )
 
Theoremlencl 13324 The length of a word is a nonnegative integer. This corresponds to the definition in section 9.1 of [AhoHopUll] p. 318. (Contributed by Stefan O'Rear, 27-Aug-2015.)
 |-  ( W  e. Word  S  ->  ( # `  W )  e.  NN0 )
 
Theoremlennncl 13325 The length of a nonempty word is a positive integer. (Contributed by Mario Carneiro, 1-Oct-2015.)
 |-  ( ( W  e. Word  S 
 /\  W  =/=  (/) )  ->  ( # `  W )  e.  NN )
 
Theoremwrdffz 13326 A word is a function from a finite interval of integers. (Contributed by AV, 10-Feb-2021.)
 |-  ( W  e. Word  S  ->  W : ( 0
 ... ( ( # `  W )  -  1
 ) ) --> S )
 
Theoremwrdeq 13327 Equality theorem for the set of words. (Contributed by Mario Carneiro, 26-Feb-2016.)
 |-  ( S  =  T  -> Word 
 S  = Word  T )
 
Theoremwrdeqi 13328 Equality theorem for the set of words, inference form. (Contributed by AV, 23-May-2021.)
 |-  S  =  T   =>    |- Word  S  = Word  T
 
Theoremiswrddm0 13329 A function with empty domain is a word. (Contributed by AV, 13-Oct-2018.)
 |-  ( W : (/) --> S 
 ->  W  e. Word  S )
 
Theoremwrd0 13330 The empty set is a word (the empty word, frequently denoted ε in this context). This corresponds to the definition in section 9.1 of [AhoHopUll] p. 318. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 13-May-2020.)
 |-  (/)  e. Word  S
 
Theorem0wrd0 13331 The empty word is the only word over an empty alphabet. (Contributed by AV, 25-Oct-2018.)
 |-  ( W  e. Word  (/)  <->  W  =  (/) )
 
Theoremffz0iswrd 13332 A sequence with zero-based indices is a word. (Contributed by AV, 31-Jan-2018.) (Proof shortened by AV, 13-Oct-2018.)
 |-  ( W : ( 0 ... L ) --> S  ->  W  e. Word  S )
 
Theoremnfwrd 13333 Hypothesis builder for Word  S. (Contributed by Mario Carneiro, 26-Feb-2016.)
 |-  F/_ x S   =>    |-  F/_ xWord  S
 
Theoremcsbwrdg 13334* Class substitution for the symbols of a word. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
 |-  ( S  e.  V  -> 
 [_ S  /  x ]_Word 
 x  = Word  S )
 
Theoremwrdnval 13335* Words of a fixed length are mappings from a fixed half-open integer interval. (Contributed by Alexander van der Vekens, 25-Mar-2018.) (Proof shortened by AV, 13-May-2020.)
 |-  ( ( V  e.  X  /\  N  e.  NN0 )  ->  { w  e. Word  V  |  ( # `  w )  =  N }  =  ( V  ^m  (
 0..^ N ) ) )
 
Theoremwrdmap 13336 Words as a mapping. (Contributed by Thierry Arnoux, 4-Mar-2020.)
 |-  ( ( V  e.  X  /\  N  e.  NN0 )  ->  ( ( W  e. Word  V  /\  ( # `  W )  =  N ) 
 <->  W  e.  ( V 
 ^m  ( 0..^ N ) ) ) )
 
Theoremhashwrdn 13337* If there is only a finite number of symbols, the number of words of a fixed length over these sysmbols is the number of these symbols raised to the power of the length. (Contributed by Alexander van der Vekens, 25-Mar-2018.)
 |-  ( ( V  e.  Fin  /\  N  e.  NN0 )  ->  ( # `  { w  e. Word  V  |  ( # `  w )  =  N } )  =  (
 ( # `  V ) ^ N ) )
 
Theoremwrdnfi 13338* If there is only a finite number of symbols, the number of words of a fixed length over these symbols is also finite. (Contributed by Alexander van der Vekens, 25-Mar-2018.)
 |-  ( ( V  e.  Fin  /\  N  e.  NN0 )  ->  { w  e. Word  V  |  ( # `  w )  =  N }  e.  Fin )
 
Theoremwrdsymb0 13339 A symbol at a position "outside" of a word. (Contributed by Alexander van der Vekens, 26-May-2018.) (Proof shortened by AV, 2-May-2020.)
 |-  ( ( W  e. Word  V 
 /\  I  e.  ZZ )  ->  ( ( I  <  0  \/  ( # `
  W )  <_  I )  ->  ( W `
  I )  =  (/) ) )
 
Theoremwrdlenge1n0 13340 A word with length at least 1 is not empty. (Contributed by AV, 14-Oct-2018.)
 |-  ( W  e. Word  V  ->  ( W  =/=  (/)  <->  1  <_  ( # `
  W ) ) )
 
Theoremwrdlenge2n0 13341 A word with length at least 2 is not empty. (Contributed by AV, 18-Jun-2018.) (Proof shortened by AV, 14-Oct-2018.)
 |-  ( ( W  e. Word  V 
 /\  2  <_  ( # `
  W ) ) 
 ->  W  =/=  (/) )
 
Theoremwrdsymb1 13342 The first symbol of a nonempty word over an alphabet belongs to the alphabet. (Contributed by Alexander van der Vekens, 28-Jun-2018.)
 |-  ( ( W  e. Word  V 
 /\  1  <_  ( # `
  W ) ) 
 ->  ( W `  0
 )  e.  V )
 
Theoremwrdlen1 13343* A word of length 1 starts with a symbol. (Contributed by AV, 20-Jul-2018.) (Proof shortened by AV, 19-Oct-2018.)
 |-  ( ( W  e. Word  V 
 /\  ( # `  W )  =  1 )  ->  E. v  e.  V  ( W `  0 )  =  v )
 
Theoremfstwrdne 13344 The first symbol of a nonempty word is element of the alphabet for the word. (Contributed by AV, 28-Sep-2018.) (Proof shortened by AV, 14-Oct-2018.)
 |-  ( ( W  e. Word  V 
 /\  W  =/=  (/) )  ->  ( W `  0 )  e.  V )
 
Theoremfstwrdne0 13345 The first symbol of a nonempty word is element of the alphabet for the word. (Contributed by AV, 29-Sep-2018.) (Proof shortened by AV, 14-Oct-2018.)
 |-  ( ( N  e.  NN  /\  ( W  e. Word  V 
 /\  ( # `  W )  =  N )
 )  ->  ( W `  0 )  e.  V )
 
Theoremeqwrd 13346* Two words are equal iff they have the same length and the same symbol at each position. (Contributed by AV, 13-Apr-2018.)
 |-  ( ( U  e. Word  V 
 /\  W  e. Word  V )  ->  ( U  =  W 
 <->  ( ( # `  U )  =  ( # `  W )  /\  A. i  e.  ( 0..^ ( # `  U ) ) ( U `  i )  =  ( W `  i ) ) ) )
 
Theoremelovmpt2wrd 13347* Implications for the value of an operation defined by the maps-to notation with a class abstration of words as a result having an element. Note that  ph may depend on  z as well as on  v and  y. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
 |-  O  =  ( v  e.  _V ,  y  e.  _V  |->  { z  e. Word  v  |  ph } )   =>    |-  ( Z  e.  ( V O Y ) 
 ->  ( V  e.  _V  /\  Y  e.  _V  /\  Z  e. Word  V ) )
 
Theoremelovmptnn0wrd 13348* Implications for the value of an operation defined by the maps-to notation with a function of nonnegative integers into a class abstraction of words as a result having an element. Note that  ph may depend on  z as well as on  v and  y and  n. (Contributed by AV, 16-Jul-2018.) (Revised by AV, 16-May-2019.)
 |-  O  =  ( v  e.  _V ,  y  e.  _V  |->  ( n  e. 
 NN0  |->  { z  e. Word  v  |  ph } ) )   =>    |-  ( Z  e.  (
 ( V O Y ) `  N )  ->  ( ( V  e.  _V 
 /\  Y  e.  _V )  /\  ( N  e.  NN0  /\  Z  e. Word  V )
 ) )
 
Theoremwrdred1 13349 A word truncated by a symbol is a word. (Contributed by AV, 29-Jan-2021.)
 |-  ( F  e. Word  S  ->  ( F  |`  ( 0..^ ( ( # `  F )  -  1 ) ) )  e. Word  S )
 
Theoremwrdred1hash 13350 The length of a word truncated by a symbol. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 29-Jan-2021.)
 |-  ( ( F  e. Word  S 
 /\  1  <_  ( # `
  F ) ) 
 ->  ( # `  ( F  |`  ( 0..^ ( ( # `  F )  -  1 ) ) ) )  =  ( ( # `  F )  -  1 ) )
 
5.7.2  Last symbol of a word
 
Theoremlsw 13351 Extract the last symbol of a word. May be not meaningful for other sets which are not words. (Contributed by Alexander van der Vekens, 18-Mar-2018.)
 |-  ( W  e.  X  ->  ( lastS  `  W )  =  ( W `  (
 ( # `  W )  -  1 ) ) )
 
Theoremlsw0 13352 The last symbol of an empty word does not exist. (Contributed by Alexander van der Vekens, 19-Mar-2018.) (Proof shortened by AV, 2-May-2020.)
 |-  ( ( W  e. Word  V 
 /\  ( # `  W )  =  0 )  ->  ( lastS  `  W )  =  (/) )
 
Theoremlsw0g 13353 The last symbol of an empty word does not exist. (Contributed by Alexander van der Vekens, 11-Nov-2018.)
 |-  ( lastS  `  (/) )  =  (/)
 
Theoremlsw1 13354 The last symbol of a word of length 1 is the first symbol of this word. (Contributed by Alexander van der Vekens, 19-Mar-2018.)
 |-  ( ( W  e. Word  V 
 /\  ( # `  W )  =  1 )  ->  ( lastS  `  W )  =  ( W `  0
 ) )
 
Theoremlswcl 13355 Closure of the last symbol: the last symbol of a not empty word belongs to the alphabet for the word. (Contributed by AV, 2-Aug-2018.) (Proof shortened by AV, 29-Apr-2020.)
 |-  ( ( W  e. Word  V 
 /\  W  =/=  (/) )  ->  ( lastS  `  W )  e.  V )
 
Theoremlswlgt0cl 13356 The last symbol of a nonempty word is element of the alphabet for the word. (Contributed by Alexander van der Vekens, 1-Oct-2018.) (Proof shortened by AV, 29-Apr-2020.)
 |-  ( ( N  e.  NN  /\  ( W  e. Word  V 
 /\  ( # `  W )  =  N )
 )  ->  ( lastS  `  W )  e.  V )
 
5.7.3  Concatenations of words
 
Theoremccatfn 13357 The concatenation operator is a two-argument function. (Contributed by Mario Carneiro, 27-Sep-2015.) (Proof shortened by AV, 29-Apr-2020.)
 |- ++ 
 Fn  ( _V  X.  _V )
 
Theoremccatfval 13358* Value of the concatenation operator. (Contributed by Stefan O'Rear, 15-Aug-2015.)
 |-  ( ( S  e.  V  /\  T  e.  W )  ->  ( S ++  T )  =  ( x  e.  ( 0..^ ( ( # `  S )  +  ( # `  T ) ) )  |->  if ( x  e.  ( 0..^ ( # `  S ) ) ,  ( S `
  x ) ,  ( T `  ( x  -  ( # `  S ) ) ) ) ) )
 
Theoremccatcl 13359 The concatenation of two words is a word. (Contributed by FL, 2-Feb-2014.) (Proof shortened by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 29-Apr-2020.)
 |-  ( ( S  e. Word  B 
 /\  T  e. Word  B )  ->  ( S ++  T )  e. Word  B )
 
Theoremccatlen 13360 The length of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.)
 |-  ( ( S  e. Word  B 
 /\  T  e. Word  B )  ->  ( # `  ( S ++  T ) )  =  ( ( # `  S )  +  ( # `  T ) ) )
 
Theoremccatval1 13361 Value of a symbol in the left half of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 22-Sep-2015.) (Proof shortened by AV, 30-Apr-2020.)
 |-  ( ( S  e. Word  B 
 /\  T  e. Word  B  /\  I  e.  (
 0..^ ( # `  S ) ) )  ->  ( ( S ++  T ) `  I )  =  ( S `  I
 ) )
 
Theoremccatval2 13362 Value of a symbol in the right half of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 22-Sep-2015.)
 |-  ( ( S  e. Word  B 
 /\  T  e. Word  B  /\  I  e.  (
 ( # `  S )..^ ( ( # `  S )  +  ( # `  T ) ) ) ) 
 ->  ( ( S ++  T ) `  I )  =  ( T `  ( I  -  ( # `  S ) ) ) )
 
Theoremccatval3 13363 Value of a symbol in the right half of a concatenated word, using an index relative to the subword. (Contributed by Stefan O'Rear, 16-Aug-2015.) (Proof shortened by AV, 30-Apr-2020.)
 |-  ( ( S  e. Word  B 
 /\  T  e. Word  B  /\  I  e.  (
 0..^ ( # `  T ) ) )  ->  ( ( S ++  T ) `  ( I  +  ( # `  S ) ) )  =  ( T `  I ) )
 
Theoremelfzelfzccat 13364 An element of a finite set of sequential integers up to the length of a word is an element of an extended finite set of sequential integers up to the length of a concatenation of this word with another word. (Contributed by Alexander van der Vekens, 28-Mar-2018.)
 |-  ( ( A  e. Word  V 
 /\  B  e. Word  V )  ->  ( N  e.  ( 0 ... ( # `
  A ) ) 
 ->  N  e.  ( 0
 ... ( # `  ( A ++  B ) ) ) ) )
 
Theoremccatvalfn 13365 The concatenation of two words is a function over the half-open integer range having the sum of the lengths of the word as length. (Contributed by Alexander van der Vekens, 30-Mar-2018.)
 |-  ( ( A  e. Word  V 
 /\  B  e. Word  V )  ->  ( A ++  B )  Fn  ( 0..^ ( ( # `  A )  +  ( # `  B ) ) ) )
 
Theoremccatsymb 13366 The symbol at a given position in a concatenated word. (Contributed by AV, 26-May-2018.) (Proof shortened by AV, 24-Nov-2018.)
 |-  ( ( A  e. Word  V 
 /\  B  e. Word  V  /\  I  e.  ZZ )  ->  ( ( A ++ 
 B ) `  I
 )  =  if ( I  <  ( # `  A ) ,  ( A `  I ) ,  ( B `  ( I  -  ( # `  A ) ) ) ) )
 
Theoremccatfv0 13367 The first symbol of a concatenation of two words is the first symbol of the first word if the first word is not empty. (Contributed by Alexander van der Vekens, 22-Sep-2018.)
 |-  ( ( A  e. Word  V 
 /\  B  e. Word  V  /\  0  <  ( # `  A ) )  ->  ( ( A ++  B ) `  0 )  =  ( A `  0
 ) )
 
Theoremccatval1lsw 13368 The last symbol of the left (nonempty) half of a concatenated word. (Contributed by Alexander van der Vekens, 3-Oct-2018.) (Proof shortened by AV, 1-May-2020.)
 |-  ( ( A  e. Word  V 
 /\  B  e. Word  V  /\  A  =/=  (/) )  ->  ( ( A ++  B ) `  ( ( # `  A )  -  1
 ) )  =  ( lastS  `  A ) )
 
Theoremccatlid 13369 Concatenation of a word by the empty word on the left. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 1-May-2020.)
 |-  ( S  e. Word  B  ->  ( (/) ++  S )  =  S )
 
Theoremccatrid 13370 Concatenation of a word by the empty word on the right. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Proof shortened by AV, 1-May-2020.)
 |-  ( S  e. Word  B  ->  ( S ++  (/) )  =  S )
 
Theoremccatass 13371 Associative law for concatenation of words. (Contributed by Stefan O'Rear, 15-Aug-2015.)
 |-  ( ( S  e. Word  B 
 /\  T  e. Word  B  /\  U  e. Word  B )  ->  ( ( S ++  T ) ++  U )  =  ( S ++  ( T ++  U ) ) )
 
Theoremccatrn 13372 The range of a concatenated word. (Contributed by Stefan O'Rear, 15-Aug-2015.)
 |-  ( ( S  e. Word  B 
 /\  T  e. Word  B )  ->  ran  ( S ++  T )  =  ( ran 
 S  u.  ran  T ) )
 
Theoremlswccatn0lsw 13373 The last symbol of a word concatenated with a nonempty word is the last symbol of the nonempty word. (Contributed by AV, 22-Oct-2018.) (Proof shortened by AV, 1-May-2020.)
 |-  ( ( A  e. Word  V 
 /\  B  e. Word  V  /\  B  =/=  (/) )  ->  ( lastS  `  ( A ++  B ) )  =  ( lastS  `  B ) )
 
Theoremlswccat0lsw 13374 The last symbol of a word concatenated with the empty word is the last symbol of the word. (Contributed by AV, 22-Oct-2018.) (Proof shortened by AV, 1-May-2020.)
 |-  ( W  e. Word  V  ->  ( lastS  `  ( W ++  (/) ) )  =  ( lastS  `  W ) )
 
Theoremccatalpha 13375 A concatenation of two arbitrary words is a word over an alphabet iff the symbols of both words belong to the alphabet. (Contributed by AV, 28-Feb-2021.)
 |-  ( ( A  e. Word  _V 
 /\  B  e. Word  _V )  ->  ( ( A ++ 
 B )  e. Word  S  <->  ( A  e. Word  S  /\  B  e. Word  S ) ) )
 
Theoremccatrcl1 13376 Reverse closure of a concatenation: If the concatenation of two arbitrary words is a word over an alphabet then the symbols of the first word belong to the alphabet. (Contributed by AV, 3-Mar-2021.)
 |-  ( ( A  e. Word  X 
 /\  B  e. Word  Y  /\  ( W  =  ( A ++  B )  /\  W  e. Word  S ) ) 
 ->  A  e. Word  S )
 
5.7.4  Singleton words
 
Theoremids1 13377 Identity function protection for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.)
 |- 
 <" A ">  = 
 <" (  _I  `  A ) ">
 
Theorems1val 13378 Value of a single-symbol word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
 |-  ( A  e.  V  -> 
 <" A ">  =  { <. 0 ,  A >. } )
 
Theorems1rn 13379 The range of a single-symbol word. (Contributed by Mario Carneiro, 18-Jul-2016.)
 |-  ( A  e.  V  ->  ran  <" A ">  =  { A }
 )
 
Theorems1eq 13380 Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.)
 |-  ( A  =  B  -> 
 <" A ">  = 
 <" B "> )
 
Theorems1eqd 13381 Equality theorem for a singleton word. (Contributed by Mario Carneiro, 26-Feb-2016.)
 |-  ( ph  ->  A  =  B )   =>    |-  ( ph  ->  <" A ">  =  <" B "> )
 
Theorems1cl 13382 A singleton word is a word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 23-Nov-2018.)
 |-  ( A  e.  B  -> 
 <" A ">  e. Word  B )
 
Theorems1cld 13383 A singleton word is a word. (Contributed by Mario Carneiro, 26-Feb-2016.)
 |-  ( ph  ->  A  e.  B )   =>    |-  ( ph  ->  <" A ">  e. Word  B )
 
Theorems1cli 13384 A singleton word is a word. (Contributed by Mario Carneiro, 26-Feb-2016.)
 |- 
 <" A ">  e. Word  _V
 
Theorems1len 13385 Length of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
 |-  ( # `  <" A "> )  =  1
 
Theorems1nz 13386 A singleton word is not the empty string. (Contributed by Mario Carneiro, 27-Feb-2016.) (Proof shortened by Kyle Wyonch, 18-Jul-2021.)
 |- 
 <" A ">  =/=  (/)
 
Theorems1nzOLD 13387 Obsolete proof of s1nz 13386 as of 18-Jul-2021. A singleton word is not the empty string. (Contributed by Mario Carneiro, 27-Feb-2016.) (New usage is discouraged.) (Proof modification is discouraged.)
 |- 
 <" A ">  =/=  (/)
 
Theorems1dm 13388 The domain of a singleton word is a singleton. (Contributed by AV, 9-Jan-2020.)
 |- 
 dom  <" A ">  =  { 0 }
 
Theorems1dmALT 13389 Alternate version of s1dm 13388, having a shorter proof, but requiring that  A ia a set. (Contributed by AV, 9-Jan-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A  e.  S  ->  dom  <" A ">  =  { 0 } )
 
Theorems1fv 13390 Sole symbol of a singleton word. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
 |-  ( A  e.  B  ->  ( <" A "> `  0 )  =  A )
 
Theoremlsws1 13391 The last symbol of a singleton word is its symbol. (Contributed by AV, 22-Oct-2018.)
 |-  ( A  e.  V  ->  ( lastS  `  <" A "> )  =  A )
 
Theoremeqs1 13392 A word of length 1 is a singleton word. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Proof shortened by AV, 1-May-2020.)
 |-  ( ( W  e. Word  A 
 /\  ( # `  W )  =  1 )  ->  W  =  <" ( W `  0 ) "> )
 
Theoremwrdl1exs1 13393* A word of length 1 is a singleton word. (Contributed by AV, 24-Jan-2021.)
 |-  ( ( W  e. Word  S 
 /\  ( # `  W )  =  1 )  ->  E. s  e.  S  W  =  <" s "> )
 
Theoremwrdl1s1 13394 A word of length 1 is a singleton word consisting of the first symbol of the word. (Contributed by AV, 22-Jul-2018.) (Proof shortened by AV, 14-Oct-2018.)
 |-  ( S  e.  V  ->  ( W  =  <" S ">  <->  ( W  e. Word  V 
 /\  ( # `  W )  =  1  /\  ( W `  0 )  =  S ) ) )
 
Theorems111 13395 The singleton word function is injective. (Contributed by Mario Carneiro, 1-Oct-2015.) (Revised by Mario Carneiro, 26-Feb-2016.)
 |-  ( ( S  e.  A  /\  T  e.  A )  ->  ( <" S ">  =  <" T "> 
 <->  S  =  T ) )
 
5.7.5  Concatenations with singleton words
 
Theoremccatws1cl 13396 The concatenation of a word with a singleton word is a word. (Contributed by Alexander van der Vekens, 22-Sep-2018.)
 |-  ( ( W  e. Word  V 
 /\  X  e.  V )  ->  ( W ++  <" X "> )  e. Word  V )
 
Theoremccat2s1cl 13397 The concatenation of two singleton words is a word. (Contributed by Alexander van der Vekens, 22-Sep-2018.)
 |-  ( ( X  e.  V  /\  Y  e.  V )  ->  ( <" X "> ++  <" Y "> )  e. Word  V )
 
Theoremccatws1len 13398 The length of the concatenation of a word with a singleton word. (Contributed by Alexander van der Vekens, 22-Sep-2018.)
 |-  ( ( W  e. Word  V 
 /\  X  e.  V )  ->  ( # `  ( W ++  <" X "> ) )  =  ( ( # `  W )  +  1 )
 )
 
Theoremwrdlenccats1lenm1 13399 The length of a word is the length of the word concatenated with a singleton word minus 1. (Contributed by AV, 28-Jun-2018.) (Proof shortened by AV, 1-May-2020.)
 |-  ( ( W  e. Word  V 
 /\  S  e.  V )  ->  ( # `  W )  =  ( ( # `
  ( W ++  <" S "> )
 )  -  1 ) )
 
Theoremccat2s1len 13400 The length of the concatenation of two singleton words. (Contributed by Alexander van der Vekens, 22-Sep-2018.)
 |-  ( ( X  e.  V  /\  Y  e.  V )  ->  ( # `  ( <" X "> ++  <" Y "> )
 )  =  2 )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >