MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgruvtxb Structured version   Visualization version   Unicode version

Theorem cusgruvtxb 26318
Description: A simple graph is complete iff the set of vertices is the set of universal vertices. (Contributed by Alexander van der Vekens, 14-Oct-2017.) (Revised by Alexander van der Vekens, 18-Jan-2018.) (Revised by AV, 1-Nov-2020.)
Hypothesis
Ref Expression
iscusgrvtx.v  |-  V  =  (Vtx `  G )
Assertion
Ref Expression
cusgruvtxb  |-  ( G  e. USGraph  ->  ( G  e. ComplUSGraph  <->  (UnivVtx `  G )  =  V ) )

Proof of Theorem cusgruvtxb
StepHypRef Expression
1 iscusgr 26314 . 2  |-  ( G  e. ComplUSGraph 
<->  ( G  e. USGraph  /\  G  e. ComplGraph ) )
2 ibar 525 . . 3  |-  ( G  e. USGraph  ->  ( G  e. ComplGraph  <->  ( G  e. USGraph  /\  G  e. ComplGraph ) ) )
3 iscusgrvtx.v . . . 4  |-  V  =  (Vtx `  G )
43cplgruvtxb 26311 . . 3  |-  ( G  e. USGraph  ->  ( G  e. ComplGraph  <->  (UnivVtx `  G )  =  V ) )
52, 4bitr3d 270 . 2  |-  ( G  e. USGraph  ->  ( ( G  e. USGraph  /\  G  e. ComplGraph )  <->  (UnivVtx `  G
)  =  V ) )
61, 5syl5bb 272 1  |-  ( G  e. USGraph  ->  ( G  e. ComplUSGraph  <->  (UnivVtx `  G )  =  V ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   ` cfv 5888  Vtxcvtx 25874   USGraph cusgr 26044  UnivVtxcuvtxa 26225  ComplGraphccplgr 26226  ComplUSGraphccusgr 26227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-uvtxa 26230  df-cplgr 26231  df-cusgr 26232
This theorem is referenced by:  vdiscusgrb  26426  vdiscusgr  26427
  Copyright terms: Public domain W3C validator