MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrval Structured version   Visualization version   Unicode version

Theorem dchrval 24959
Description: Value of the group of Dirichlet characters. (Contributed by Mario Carneiro, 18-Apr-2016.)
Hypotheses
Ref Expression
dchrval.g  |-  G  =  (DChr `  N )
dchrval.z  |-  Z  =  (ℤ/n `  N )
dchrval.b  |-  B  =  ( Base `  Z
)
dchrval.u  |-  U  =  (Unit `  Z )
dchrval.n  |-  ( ph  ->  N  e.  NN )
dchrval.d  |-  ( ph  ->  D  =  { x  e.  ( (mulGrp `  Z
) MndHom  (mulGrp ` fld ) )  |  ( ( B  \  U
)  X.  { 0 } )  C_  x } )
Assertion
Ref Expression
dchrval  |-  ( ph  ->  G  =  { <. (
Base `  ndx ) ,  D >. ,  <. ( +g  `  ndx ) ,  (  oF  x.  |`  ( D  X.  D
) ) >. } )
Distinct variable groups:    x, B    x, N    x, U    ph, x    x, Z
Allowed substitution hints:    D( x)    G( x)

Proof of Theorem dchrval
Dummy variables  z  n  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dchrval.g . 2  |-  G  =  (DChr `  N )
2 df-dchr 24958 . . . 4  |- DChr  =  ( n  e.  NN  |->  [_ (ℤ/n `  n )  /  z ]_ [_ { x  e.  ( (mulGrp `  z
) MndHom  (mulGrp ` fld ) )  |  ( ( ( Base `  z
)  \  (Unit `  z
) )  X.  {
0 } )  C_  x }  /  b ]_ { <. ( Base `  ndx ) ,  b >. , 
<. ( +g  `  ndx ) ,  (  oF  x.  |`  ( b  X.  b ) )
>. } )
32a1i 11 . . 3  |-  ( ph  -> DChr  =  ( n  e.  NN  |->  [_ (ℤ/n `  n )  /  z ]_ [_ { x  e.  ( (mulGrp `  z
) MndHom  (mulGrp ` fld ) )  |  ( ( ( Base `  z
)  \  (Unit `  z
) )  X.  {
0 } )  C_  x }  /  b ]_ { <. ( Base `  ndx ) ,  b >. , 
<. ( +g  `  ndx ) ,  (  oF  x.  |`  ( b  X.  b ) )
>. } ) )
4 fvexd 6203 . . . 4  |-  ( (
ph  /\  n  =  N )  ->  (ℤ/n `  n
)  e.  _V )
5 ovex 6678 . . . . . . 7  |-  ( (mulGrp `  z ) MndHom  (mulGrp ` fld )
)  e.  _V
65rabex 4813 . . . . . 6  |-  { x  e.  ( (mulGrp `  z
) MndHom  (mulGrp ` fld ) )  |  ( ( ( Base `  z
)  \  (Unit `  z
) )  X.  {
0 } )  C_  x }  e.  _V
76a1i 11 . . . . 5  |-  ( ( ( ph  /\  n  =  N )  /\  z  =  (ℤ/n `  n ) )  ->  { x  e.  (
(mulGrp `  z ) MndHom  (mulGrp ` fld ) )  |  ( ( ( Base `  z
)  \  (Unit `  z
) )  X.  {
0 } )  C_  x }  e.  _V )
8 dchrval.d . . . . . . . . . . 11  |-  ( ph  ->  D  =  { x  e.  ( (mulGrp `  Z
) MndHom  (mulGrp ` fld ) )  |  ( ( B  \  U
)  X.  { 0 } )  C_  x } )
98ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  =  N )  /\  z  =  (ℤ/n `  n ) )  ->  D  =  { x  e.  ( (mulGrp `  Z
) MndHom  (mulGrp ` fld ) )  |  ( ( B  \  U
)  X.  { 0 } )  C_  x } )
10 simpr 477 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  n  =  N )  ->  n  =  N )
1110fveq2d 6195 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  n  =  N )  ->  (ℤ/n `  n
)  =  (ℤ/n `  N
) )
12 dchrval.z . . . . . . . . . . . . . . . 16  |-  Z  =  (ℤ/n `  N )
1311, 12syl6reqr 2675 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  n  =  N )  ->  Z  =  (ℤ/n `  n ) )
1413eqeq2d 2632 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  =  N )  ->  (
z  =  Z  <->  z  =  (ℤ/n `  n ) ) )
1514biimpar 502 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  =  N )  /\  z  =  (ℤ/n `  n ) )  -> 
z  =  Z )
1615fveq2d 6195 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  =  N )  /\  z  =  (ℤ/n `  n ) )  -> 
(mulGrp `  z )  =  (mulGrp `  Z )
)
1716oveq1d 6665 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  =  N )  /\  z  =  (ℤ/n `  n ) )  -> 
( (mulGrp `  z
) MndHom  (mulGrp ` fld ) )  =  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld ) ) )
1815fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  =  N )  /\  z  =  (ℤ/n `  n ) )  -> 
( Base `  z )  =  ( Base `  Z
) )
19 dchrval.b . . . . . . . . . . . . . . 15  |-  B  =  ( Base `  Z
)
2018, 19syl6eqr 2674 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  =  N )  /\  z  =  (ℤ/n `  n ) )  -> 
( Base `  z )  =  B )
2115fveq2d 6195 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  =  N )  /\  z  =  (ℤ/n `  n ) )  -> 
(Unit `  z )  =  (Unit `  Z )
)
22 dchrval.u . . . . . . . . . . . . . . 15  |-  U  =  (Unit `  Z )
2321, 22syl6eqr 2674 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  =  N )  /\  z  =  (ℤ/n `  n ) )  -> 
(Unit `  z )  =  U )
2420, 23difeq12d 3729 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  =  N )  /\  z  =  (ℤ/n `  n ) )  -> 
( ( Base `  z
)  \  (Unit `  z
) )  =  ( B  \  U ) )
2524xpeq1d 5138 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  =  N )  /\  z  =  (ℤ/n `  n ) )  -> 
( ( ( Base `  z )  \  (Unit `  z ) )  X. 
{ 0 } )  =  ( ( B 
\  U )  X. 
{ 0 } ) )
2625sseq1d 3632 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  =  N )  /\  z  =  (ℤ/n `  n ) )  -> 
( ( ( (
Base `  z )  \  (Unit `  z )
)  X.  { 0 } )  C_  x  <->  ( ( B  \  U
)  X.  { 0 } )  C_  x
) )
2717, 26rabeqbidv 3195 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  =  N )  /\  z  =  (ℤ/n `  n ) )  ->  { x  e.  (
(mulGrp `  z ) MndHom  (mulGrp ` fld ) )  |  ( ( ( Base `  z
)  \  (Unit `  z
) )  X.  {
0 } )  C_  x }  =  {
x  e.  ( (mulGrp `  Z ) MndHom  (mulGrp ` fld )
)  |  ( ( B  \  U )  X.  { 0 } )  C_  x }
)
289, 27eqtr4d 2659 . . . . . . . . 9  |-  ( ( ( ph  /\  n  =  N )  /\  z  =  (ℤ/n `  n ) )  ->  D  =  { x  e.  ( (mulGrp `  z
) MndHom  (mulGrp ` fld ) )  |  ( ( ( Base `  z
)  \  (Unit `  z
) )  X.  {
0 } )  C_  x } )
2928eqeq2d 2632 . . . . . . . 8  |-  ( ( ( ph  /\  n  =  N )  /\  z  =  (ℤ/n `  n ) )  -> 
( b  =  D  <-> 
b  =  { x  e.  ( (mulGrp `  z
) MndHom  (mulGrp ` fld ) )  |  ( ( ( Base `  z
)  \  (Unit `  z
) )  X.  {
0 } )  C_  x } ) )
3029biimpar 502 . . . . . . 7  |-  ( ( ( ( ph  /\  n  =  N )  /\  z  =  (ℤ/n `  n
) )  /\  b  =  { x  e.  ( (mulGrp `  z ) MndHom  (mulGrp ` fld ) )  |  ( ( ( Base `  z
)  \  (Unit `  z
) )  X.  {
0 } )  C_  x } )  ->  b  =  D )
3130opeq2d 4409 . . . . . 6  |-  ( ( ( ( ph  /\  n  =  N )  /\  z  =  (ℤ/n `  n
) )  /\  b  =  { x  e.  ( (mulGrp `  z ) MndHom  (mulGrp ` fld ) )  |  ( ( ( Base `  z
)  \  (Unit `  z
) )  X.  {
0 } )  C_  x } )  ->  <. ( Base `  ndx ) ,  b >.  =  <. (
Base `  ndx ) ,  D >. )
3230sqxpeqd 5141 . . . . . . . 8  |-  ( ( ( ( ph  /\  n  =  N )  /\  z  =  (ℤ/n `  n
) )  /\  b  =  { x  e.  ( (mulGrp `  z ) MndHom  (mulGrp ` fld ) )  |  ( ( ( Base `  z
)  \  (Unit `  z
) )  X.  {
0 } )  C_  x } )  ->  (
b  X.  b )  =  ( D  X.  D ) )
3332reseq2d 5396 . . . . . . 7  |-  ( ( ( ( ph  /\  n  =  N )  /\  z  =  (ℤ/n `  n
) )  /\  b  =  { x  e.  ( (mulGrp `  z ) MndHom  (mulGrp ` fld ) )  |  ( ( ( Base `  z
)  \  (Unit `  z
) )  X.  {
0 } )  C_  x } )  ->  (  oF  x.  |`  (
b  X.  b ) )  =  (  oF  x.  |`  ( D  X.  D ) ) )
3433opeq2d 4409 . . . . . 6  |-  ( ( ( ( ph  /\  n  =  N )  /\  z  =  (ℤ/n `  n
) )  /\  b  =  { x  e.  ( (mulGrp `  z ) MndHom  (mulGrp ` fld ) )  |  ( ( ( Base `  z
)  \  (Unit `  z
) )  X.  {
0 } )  C_  x } )  ->  <. ( +g  `  ndx ) ,  (  oF  x.  |`  ( b  X.  b
) ) >.  =  <. ( +g  `  ndx ) ,  (  oF  x.  |`  ( D  X.  D ) ) >.
)
3531, 34preq12d 4276 . . . . 5  |-  ( ( ( ( ph  /\  n  =  N )  /\  z  =  (ℤ/n `  n
) )  /\  b  =  { x  e.  ( (mulGrp `  z ) MndHom  (mulGrp ` fld ) )  |  ( ( ( Base `  z
)  \  (Unit `  z
) )  X.  {
0 } )  C_  x } )  ->  { <. (
Base `  ndx ) ,  b >. ,  <. ( +g  `  ndx ) ,  (  oF  x.  |`  ( b  X.  b
) ) >. }  =  { <. ( Base `  ndx ) ,  D >. , 
<. ( +g  `  ndx ) ,  (  oF  x.  |`  ( D  X.  D ) )
>. } )
367, 35csbied 3560 . . . 4  |-  ( ( ( ph  /\  n  =  N )  /\  z  =  (ℤ/n `  n ) )  ->  [_ { x  e.  ( (mulGrp `  z ) MndHom  (mulGrp ` fld ) )  |  ( ( ( Base `  z
)  \  (Unit `  z
) )  X.  {
0 } )  C_  x }  /  b ]_ { <. ( Base `  ndx ) ,  b >. , 
<. ( +g  `  ndx ) ,  (  oF  x.  |`  ( b  X.  b ) )
>. }  =  { <. (
Base `  ndx ) ,  D >. ,  <. ( +g  `  ndx ) ,  (  oF  x.  |`  ( D  X.  D
) ) >. } )
374, 36csbied 3560 . . 3  |-  ( (
ph  /\  n  =  N )  ->  [_ (ℤ/n `  n
)  /  z ]_ [_ { x  e.  ( (mulGrp `  z ) MndHom  (mulGrp ` fld ) )  |  ( ( ( Base `  z
)  \  (Unit `  z
) )  X.  {
0 } )  C_  x }  /  b ]_ { <. ( Base `  ndx ) ,  b >. , 
<. ( +g  `  ndx ) ,  (  oF  x.  |`  ( b  X.  b ) )
>. }  =  { <. (
Base `  ndx ) ,  D >. ,  <. ( +g  `  ndx ) ,  (  oF  x.  |`  ( D  X.  D
) ) >. } )
38 dchrval.n . . 3  |-  ( ph  ->  N  e.  NN )
39 prex 4909 . . . 4  |-  { <. (
Base `  ndx ) ,  D >. ,  <. ( +g  `  ndx ) ,  (  oF  x.  |`  ( D  X.  D
) ) >. }  e.  _V
4039a1i 11 . . 3  |-  ( ph  ->  { <. ( Base `  ndx ) ,  D >. , 
<. ( +g  `  ndx ) ,  (  oF  x.  |`  ( D  X.  D ) )
>. }  e.  _V )
413, 37, 38, 40fvmptd 6288 . 2  |-  ( ph  ->  (DChr `  N )  =  { <. ( Base `  ndx ) ,  D >. , 
<. ( +g  `  ndx ) ,  (  oF  x.  |`  ( D  X.  D ) )
>. } )
421, 41syl5eq 2668 1  |-  ( ph  ->  G  =  { <. (
Base `  ndx ) ,  D >. ,  <. ( +g  `  ndx ) ,  (  oF  x.  |`  ( D  X.  D
) ) >. } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   _Vcvv 3200   [_csb 3533    \ cdif 3571    C_ wss 3574   {csn 4177   {cpr 4179   <.cop 4183    |-> cmpt 4729    X. cxp 5112    |` cres 5116   ` cfv 5888  (class class class)co 6650    oFcof 6895   0cc0 9936    x. cmul 9941   NNcn 11020   ndxcnx 15854   Basecbs 15857   +g cplusg 15941   MndHom cmhm 17333  mulGrpcmgp 18489  Unitcui 18639  ℂfldccnfld 19746  ℤ/nczn 19851  DChrcdchr 24957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-dchr 24958
This theorem is referenced by:  dchrbas  24960  dchrplusg  24972
  Copyright terms: Public domain W3C validator