HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhssabloilem Structured version   Visualization version   Unicode version

Theorem hhssabloilem 28118
Description: Lemma for hhssabloi 28119. Formerly part of proof for hhssabloi 28119 which was based on the deprecated definition "SubGrpOp" for subgroups. (Contributed by NM, 9-Apr-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (Revised by AV, 27-Aug-2021.) (New usage is discouraged.)
Hypothesis
Ref Expression
hhssabl.1  |-  H  e.  SH
Assertion
Ref Expression
hhssabloilem  |-  (  +h  e.  GrpOp  /\  (  +h  |`  ( H  X.  H
) )  e.  GrpOp  /\  (  +h  |`  ( H  X.  H ) ) 
C_  +h  )

Proof of Theorem hhssabloilem
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hilablo 28017 . . 3  |-  +h  e.  AbelOp
2 ablogrpo 27401 . . 3  |-  (  +h  e.  AbelOp  ->  +h  e.  GrpOp )
31, 2ax-mp 5 . 2  |-  +h  e.  GrpOp
4 hhssabl.1 . . . 4  |-  H  e.  SH
54elexi 3213 . . 3  |-  H  e. 
_V
6 eqid 2622 . . . . . . . 8  |-  ran  +h  =  ran  +h
76grpofo 27353 . . . . . . 7  |-  (  +h  e.  GrpOp  ->  +h  : ( ran  +h  X.  ran  +h  ) -onto-> ran  +h  )
8 fof 6115 . . . . . . 7  |-  (  +h  : ( ran  +h  X.  ran  +h  ) -onto-> ran 
+h  ->  +h  : ( ran  +h  X.  ran  +h  )
--> ran  +h  )
93, 7, 8mp2b 10 . . . . . 6  |-  +h  :
( ran  +h  X.  ran  +h  ) --> ran  +h
104shssii 28070 . . . . . . . 8  |-  H  C_  ~H
11 df-hba 27826 . . . . . . . . 9  |-  ~H  =  ( BaseSet `  <. <.  +h  ,  .h  >. ,  normh >. )
12 eqid 2622 . . . . . . . . . 10  |-  <. <.  +h  ,  .h  >. ,  normh >.  =  <. <.  +h  ,  .h  >. ,  normh >.
1312hhva 28023 . . . . . . . . 9  |-  +h  =  ( +v `  <. <.  +h  ,  .h  >. ,  normh >. )
1411, 13bafval 27459 . . . . . . . 8  |-  ~H  =  ran  +h
1510, 14sseqtri 3637 . . . . . . 7  |-  H  C_  ran  +h
16 xpss12 5225 . . . . . . 7  |-  ( ( H  C_  ran  +h  /\  H  C_  ran  +h  )  ->  ( H  X.  H
)  C_  ( ran  +h 
X.  ran  +h  )
)
1715, 15, 16mp2an 708 . . . . . 6  |-  ( H  X.  H )  C_  ( ran  +h  X.  ran  +h  )
18 fssres 6070 . . . . . 6  |-  ( (  +h  : ( ran 
+h  X.  ran  +h  ) --> ran  +h  /\  ( H  X.  H )  C_  ( ran  +h  X.  ran  +h  ) )  ->  (  +h  |`  ( H  X.  H ) ) : ( H  X.  H
) --> ran  +h  )
199, 17, 18mp2an 708 . . . . 5  |-  (  +h  |`  ( H  X.  H
) ) : ( H  X.  H ) --> ran  +h
20 ffn 6045 . . . . 5  |-  ( (  +h  |`  ( H  X.  H ) ) : ( H  X.  H
) --> ran  +h  ->  (  +h  |`  ( H  X.  H ) )  Fn  ( H  X.  H
) )
2119, 20ax-mp 5 . . . 4  |-  (  +h  |`  ( H  X.  H
) )  Fn  ( H  X.  H )
22 ovres 6800 . . . . . 6  |-  ( ( x  e.  H  /\  y  e.  H )  ->  ( x (  +h  |`  ( H  X.  H
) ) y )  =  ( x  +h  y ) )
23 shaddcl 28074 . . . . . . 7  |-  ( ( H  e.  SH  /\  x  e.  H  /\  y  e.  H )  ->  ( x  +h  y
)  e.  H )
244, 23mp3an1 1411 . . . . . 6  |-  ( ( x  e.  H  /\  y  e.  H )  ->  ( x  +h  y
)  e.  H )
2522, 24eqeltrd 2701 . . . . 5  |-  ( ( x  e.  H  /\  y  e.  H )  ->  ( x (  +h  |`  ( H  X.  H
) ) y )  e.  H )
2625rgen2a 2977 . . . 4  |-  A. x  e.  H  A. y  e.  H  ( x
(  +h  |`  ( H  X.  H ) ) y )  e.  H
27 ffnov 6764 . . . 4  |-  ( (  +h  |`  ( H  X.  H ) ) : ( H  X.  H
) --> H  <->  ( (  +h  |`  ( H  X.  H ) )  Fn  ( H  X.  H
)  /\  A. x  e.  H  A. y  e.  H  ( x
(  +h  |`  ( H  X.  H ) ) y )  e.  H
) )
2821, 26, 27mpbir2an 955 . . 3  |-  (  +h  |`  ( H  X.  H
) ) : ( H  X.  H ) --> H
2922oveq1d 6665 . . . . 5  |-  ( ( x  e.  H  /\  y  e.  H )  ->  ( ( x (  +h  |`  ( H  X.  H ) ) y )  +h  z )  =  ( ( x  +h  y )  +h  z ) )
30293adant3 1081 . . . 4  |-  ( ( x  e.  H  /\  y  e.  H  /\  z  e.  H )  ->  ( ( x (  +h  |`  ( H  X.  H ) ) y )  +h  z )  =  ( ( x  +h  y )  +h  z ) )
31 ovres 6800 . . . . 5  |-  ( ( ( x (  +h  |`  ( H  X.  H
) ) y )  e.  H  /\  z  e.  H )  ->  (
( x (  +h  |`  ( H  X.  H
) ) y ) (  +h  |`  ( H  X.  H ) ) z )  =  ( ( x (  +h  |`  ( H  X.  H
) ) y )  +h  z ) )
3225, 31stoic3 1701 . . . 4  |-  ( ( x  e.  H  /\  y  e.  H  /\  z  e.  H )  ->  ( ( x (  +h  |`  ( H  X.  H ) ) y ) (  +h  |`  ( H  X.  H ) ) z )  =  ( ( x (  +h  |`  ( H  X.  H
) ) y )  +h  z ) )
33 ovres 6800 . . . . . . 7  |-  ( ( y  e.  H  /\  z  e.  H )  ->  ( y (  +h  |`  ( H  X.  H
) ) z )  =  ( y  +h  z ) )
3433oveq2d 6666 . . . . . 6  |-  ( ( y  e.  H  /\  z  e.  H )  ->  ( x  +h  (
y (  +h  |`  ( H  X.  H ) ) z ) )  =  ( x  +h  (
y  +h  z ) ) )
35343adant1 1079 . . . . 5  |-  ( ( x  e.  H  /\  y  e.  H  /\  z  e.  H )  ->  ( x  +h  (
y (  +h  |`  ( H  X.  H ) ) z ) )  =  ( x  +h  (
y  +h  z ) ) )
3628fovcl 6765 . . . . . . 7  |-  ( ( y  e.  H  /\  z  e.  H )  ->  ( y (  +h  |`  ( H  X.  H
) ) z )  e.  H )
37 ovres 6800 . . . . . . 7  |-  ( ( x  e.  H  /\  ( y (  +h  |`  ( H  X.  H
) ) z )  e.  H )  -> 
( x (  +h  |`  ( H  X.  H
) ) ( y (  +h  |`  ( H  X.  H ) ) z ) )  =  ( x  +h  (
y (  +h  |`  ( H  X.  H ) ) z ) ) )
3836, 37sylan2 491 . . . . . 6  |-  ( ( x  e.  H  /\  ( y  e.  H  /\  z  e.  H
) )  ->  (
x (  +h  |`  ( H  X.  H ) ) ( y (  +h  |`  ( H  X.  H
) ) z ) )  =  ( x  +h  ( y (  +h  |`  ( H  X.  H ) ) z ) ) )
39383impb 1260 . . . . 5  |-  ( ( x  e.  H  /\  y  e.  H  /\  z  e.  H )  ->  ( x (  +h  |`  ( H  X.  H
) ) ( y (  +h  |`  ( H  X.  H ) ) z ) )  =  ( x  +h  (
y (  +h  |`  ( H  X.  H ) ) z ) ) )
4015sseli 3599 . . . . . 6  |-  ( x  e.  H  ->  x  e.  ran  +h  )
4115sseli 3599 . . . . . 6  |-  ( y  e.  H  ->  y  e.  ran  +h  )
4215sseli 3599 . . . . . 6  |-  ( z  e.  H  ->  z  e.  ran  +h  )
436grpoass 27357 . . . . . . 7  |-  ( (  +h  e.  GrpOp  /\  (
x  e.  ran  +h  /\  y  e.  ran  +h  /\  z  e.  ran  +h  ) )  ->  (
( x  +h  y
)  +h  z )  =  ( x  +h  ( y  +h  z
) ) )
443, 43mpan 706 . . . . . 6  |-  ( ( x  e.  ran  +h  /\  y  e.  ran  +h  /\  z  e.  ran  +h  )  ->  ( ( x  +h  y )  +h  z )  =  ( x  +h  ( y  +h  z ) ) )
4540, 41, 42, 44syl3an 1368 . . . . 5  |-  ( ( x  e.  H  /\  y  e.  H  /\  z  e.  H )  ->  ( ( x  +h  y )  +h  z
)  =  ( x  +h  ( y  +h  z ) ) )
4635, 39, 453eqtr4d 2666 . . . 4  |-  ( ( x  e.  H  /\  y  e.  H  /\  z  e.  H )  ->  ( x (  +h  |`  ( H  X.  H
) ) ( y (  +h  |`  ( H  X.  H ) ) z ) )  =  ( ( x  +h  y )  +h  z
) )
4730, 32, 463eqtr4d 2666 . . 3  |-  ( ( x  e.  H  /\  y  e.  H  /\  z  e.  H )  ->  ( ( x (  +h  |`  ( H  X.  H ) ) y ) (  +h  |`  ( H  X.  H ) ) z )  =  ( x (  +h  |`  ( H  X.  H ) ) ( y (  +h  |`  ( H  X.  H
) ) z ) ) )
48 hilid 28018 . . . 4  |-  (GId `  +h  )  =  0h
49 sh0 28073 . . . . 5  |-  ( H  e.  SH  ->  0h  e.  H )
504, 49ax-mp 5 . . . 4  |-  0h  e.  H
5148, 50eqeltri 2697 . . 3  |-  (GId `  +h  )  e.  H
52 ovres 6800 . . . . 5  |-  ( ( (GId `  +h  )  e.  H  /\  x  e.  H )  ->  (
(GId `  +h  )
(  +h  |`  ( H  X.  H ) ) x )  =  ( (GId `  +h  )  +h  x ) )
5351, 52mpan 706 . . . 4  |-  ( x  e.  H  ->  (
(GId `  +h  )
(  +h  |`  ( H  X.  H ) ) x )  =  ( (GId `  +h  )  +h  x ) )
54 eqid 2622 . . . . . 6  |-  (GId `  +h  )  =  (GId ` 
+h  )
556, 54grpolid 27370 . . . . 5  |-  ( (  +h  e.  GrpOp  /\  x  e.  ran  +h  )  -> 
( (GId `  +h  )  +h  x )  =  x )
563, 40, 55sylancr 695 . . . 4  |-  ( x  e.  H  ->  (
(GId `  +h  )  +h  x )  =  x )
5753, 56eqtrd 2656 . . 3  |-  ( x  e.  H  ->  (
(GId `  +h  )
(  +h  |`  ( H  X.  H ) ) x )  =  x )
5812hhnv 28022 . . . . . . 7  |-  <. <.  +h  ,  .h  >. ,  normh >.  e.  NrmCVec
5912hhsm 28026 . . . . . . . 8  |-  .h  =  ( .sOLD `  <. <.  +h  ,  .h  >. ,  normh >.
)
60 eqid 2622 . . . . . . . 8  |-  (  .h  o.  `' ( 2nd  |`  ( { -u 1 }  X.  _V ) ) )  =  (  .h  o.  `' ( 2nd  |`  ( { -u 1 }  X.  _V ) ) )
6113, 59, 60nvinvfval 27495 . . . . . . 7  |-  ( <. <.  +h  ,  .h  >. , 
normh >.  e.  NrmCVec  ->  (  .h  o.  `' ( 2nd  |`  ( { -u 1 }  X.  _V ) ) )  =  ( inv `  +h  ) )
6258, 61ax-mp 5 . . . . . 6  |-  (  .h  o.  `' ( 2nd  |`  ( { -u 1 }  X.  _V ) ) )  =  ( inv `  +h  )
6362eqcomi 2631 . . . . 5  |-  ( inv `  +h  )  =  (  .h  o.  `' ( 2nd  |`  ( { -u 1 }  X.  _V ) ) )
6463fveq1i 6192 . . . 4  |-  ( ( inv `  +h  ) `  x )  =  ( (  .h  o.  `' ( 2nd  |`  ( { -u 1 }  X.  _V ) ) ) `  x )
65 ax-hfvmul 27862 . . . . . . 7  |-  .h  :
( CC  X.  ~H )
--> ~H
66 ffn 6045 . . . . . . 7  |-  (  .h  : ( CC  X.  ~H ) --> ~H  ->  .h  Fn  ( CC  X.  ~H )
)
6765, 66ax-mp 5 . . . . . 6  |-  .h  Fn  ( CC  X.  ~H )
68 neg1cn 11124 . . . . . 6  |-  -u 1  e.  CC
6960curry1val 7270 . . . . . 6  |-  ( (  .h  Fn  ( CC 
X.  ~H )  /\  -u 1  e.  CC )  ->  (
(  .h  o.  `' ( 2nd  |`  ( { -u 1 }  X.  _V ) ) ) `  x )  =  (
-u 1  .h  x
) )
7067, 68, 69mp2an 708 . . . . 5  |-  ( (  .h  o.  `' ( 2nd  |`  ( { -u 1 }  X.  _V ) ) ) `  x )  =  (
-u 1  .h  x
)
71 shmulcl 28075 . . . . . 6  |-  ( ( H  e.  SH  /\  -u 1  e.  CC  /\  x  e.  H )  ->  ( -u 1  .h  x )  e.  H
)
724, 68, 71mp3an12 1414 . . . . 5  |-  ( x  e.  H  ->  ( -u 1  .h  x )  e.  H )
7370, 72syl5eqel 2705 . . . 4  |-  ( x  e.  H  ->  (
(  .h  o.  `' ( 2nd  |`  ( { -u 1 }  X.  _V ) ) ) `  x )  e.  H
)
7464, 73syl5eqel 2705 . . 3  |-  ( x  e.  H  ->  (
( inv `  +h  ) `  x )  e.  H )
75 ovres 6800 . . . . 5  |-  ( ( ( ( inv `  +h  ) `  x )  e.  H  /\  x  e.  H )  ->  (
( ( inv `  +h  ) `  x )
(  +h  |`  ( H  X.  H ) ) x )  =  ( ( ( inv `  +h  ) `  x )  +h  x ) )
7674, 75mpancom 703 . . . 4  |-  ( x  e.  H  ->  (
( ( inv `  +h  ) `  x )
(  +h  |`  ( H  X.  H ) ) x )  =  ( ( ( inv `  +h  ) `  x )  +h  x ) )
77 eqid 2622 . . . . . 6  |-  ( inv `  +h  )  =  ( inv `  +h  )
786, 54, 77grpolinv 27380 . . . . 5  |-  ( (  +h  e.  GrpOp  /\  x  e.  ran  +h  )  -> 
( ( ( inv `  +h  ) `  x
)  +h  x )  =  (GId `  +h  ) )
793, 40, 78sylancr 695 . . . 4  |-  ( x  e.  H  ->  (
( ( inv `  +h  ) `  x )  +h  x )  =  (GId
`  +h  ) )
8076, 79eqtrd 2656 . . 3  |-  ( x  e.  H  ->  (
( ( inv `  +h  ) `  x )
(  +h  |`  ( H  X.  H ) ) x )  =  (GId
`  +h  ) )
815, 28, 47, 51, 57, 74, 80isgrpoi 27352 . 2  |-  (  +h  |`  ( H  X.  H
) )  e.  GrpOp
82 resss 5422 . 2  |-  (  +h  |`  ( H  X.  H
) )  C_  +h
833, 81, 823pm3.2i 1239 1  |-  (  +h  e.  GrpOp  /\  (  +h  |`  ( H  X.  H
) )  e.  GrpOp  /\  (  +h  |`  ( H  X.  H ) ) 
C_  +h  )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    C_ wss 3574   {csn 4177   <.cop 4183    X. cxp 5112   `'ccnv 5113   ran crn 5115    |` cres 5116    o. ccom 5118    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650   2ndc2nd 7167   CCcc 9934   1c1 9937   -ucneg 10267   GrpOpcgr 27343  GIdcgi 27344   invcgn 27345   AbelOpcablo 27398   NrmCVeccnv 27439   ~Hchil 27776    +h cva 27777    .h csm 27778   normhcno 27780   0hc0v 27781   SHcsh 27785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-hilex 27856  ax-hfvadd 27857  ax-hvcom 27858  ax-hvass 27859  ax-hv0cl 27860  ax-hvaddid 27861  ax-hfvmul 27862  ax-hvmulid 27863  ax-hvmulass 27864  ax-hvdistr1 27865  ax-hvdistr2 27866  ax-hvmul0 27867  ax-hfi 27936  ax-his1 27939  ax-his2 27940  ax-his3 27941  ax-his4 27942
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-grpo 27347  df-gid 27348  df-ginv 27349  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-nmcv 27455  df-hnorm 27825  df-hba 27826  df-hvsub 27828  df-sh 28064
This theorem is referenced by:  hhssabloi  28119
  Copyright terms: Public domain W3C validator