| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unizlim | Structured version Visualization version Unicode version | ||
| Description: An ordinal equal to its own union is either zero or a limit ordinal. (Contributed by NM, 1-Oct-2003.) |
| Ref | Expression |
|---|---|
| unizlim |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2795 |
. . . . . . 7
| |
| 2 | df-lim 5728 |
. . . . . . . . 9
| |
| 3 | 2 | biimpri 218 |
. . . . . . . 8
|
| 4 | 3 | 3exp 1264 |
. . . . . . 7
|
| 5 | 1, 4 | syl5bir 233 |
. . . . . 6
|
| 6 | 5 | com23 86 |
. . . . 5
|
| 7 | 6 | imp 445 |
. . . 4
|
| 8 | 7 | orrd 393 |
. . 3
|
| 9 | 8 | ex 450 |
. 2
|
| 10 | uni0 4465 |
. . . . 5
| |
| 11 | 10 | eqcomi 2631 |
. . . 4
|
| 12 | id 22 |
. . . 4
| |
| 13 | unieq 4444 |
. . . 4
| |
| 14 | 11, 12, 13 | 3eqtr4a 2682 |
. . 3
|
| 15 | limuni 5785 |
. . 3
| |
| 16 | 14, 15 | jaoi 394 |
. 2
|
| 17 | 9, 16 | impbid1 215 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-nul 3916 df-sn 4178 df-uni 4437 df-lim 5728 |
| This theorem is referenced by: ordzsl 7045 oeeulem 7681 cantnfp1lem2 8576 cantnflem1 8586 cnfcom2lem 8598 ordcmp 32446 |
| Copyright terms: Public domain | W3C validator |