MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unizlim Structured version   Visualization version   Unicode version

Theorem unizlim 5844
Description: An ordinal equal to its own union is either zero or a limit ordinal. (Contributed by NM, 1-Oct-2003.)
Assertion
Ref Expression
unizlim  |-  ( Ord 
A  ->  ( A  =  U. A  <->  ( A  =  (/)  \/  Lim  A
) ) )

Proof of Theorem unizlim
StepHypRef Expression
1 df-ne 2795 . . . . . . 7  |-  ( A  =/=  (/)  <->  -.  A  =  (/) )
2 df-lim 5728 . . . . . . . . 9  |-  ( Lim 
A  <->  ( Ord  A  /\  A  =/=  (/)  /\  A  =  U. A ) )
32biimpri 218 . . . . . . . 8  |-  ( ( Ord  A  /\  A  =/=  (/)  /\  A  = 
U. A )  ->  Lim  A )
433exp 1264 . . . . . . 7  |-  ( Ord 
A  ->  ( A  =/=  (/)  ->  ( A  =  U. A  ->  Lim  A ) ) )
51, 4syl5bir 233 . . . . . 6  |-  ( Ord 
A  ->  ( -.  A  =  (/)  ->  ( A  =  U. A  ->  Lim  A ) ) )
65com23 86 . . . . 5  |-  ( Ord 
A  ->  ( A  =  U. A  ->  ( -.  A  =  (/)  ->  Lim  A ) ) )
76imp 445 . . . 4  |-  ( ( Ord  A  /\  A  =  U. A )  -> 
( -.  A  =  (/)  ->  Lim  A )
)
87orrd 393 . . 3  |-  ( ( Ord  A  /\  A  =  U. A )  -> 
( A  =  (/)  \/ 
Lim  A ) )
98ex 450 . 2  |-  ( Ord 
A  ->  ( A  =  U. A  ->  ( A  =  (/)  \/  Lim  A ) ) )
10 uni0 4465 . . . . 5  |-  U. (/)  =  (/)
1110eqcomi 2631 . . . 4  |-  (/)  =  U. (/)
12 id 22 . . . 4  |-  ( A  =  (/)  ->  A  =  (/) )
13 unieq 4444 . . . 4  |-  ( A  =  (/)  ->  U. A  =  U. (/) )
1411, 12, 133eqtr4a 2682 . . 3  |-  ( A  =  (/)  ->  A  = 
U. A )
15 limuni 5785 . . 3  |-  ( Lim 
A  ->  A  =  U. A )
1614, 15jaoi 394 . 2  |-  ( ( A  =  (/)  \/  Lim  A )  ->  A  =  U. A )
179, 16impbid1 215 1  |-  ( Ord 
A  ->  ( A  =  U. A  <->  ( A  =  (/)  \/  Lim  A
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    =/= wne 2794   (/)c0 3915   U.cuni 4436   Ord word 5722   Lim wlim 5724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-uni 4437  df-lim 5728
This theorem is referenced by:  ordzsl  7045  oeeulem  7681  cantnfp1lem2  8576  cantnflem1  8586  cnfcom2lem  8598  ordcmp  32446
  Copyright terms: Public domain W3C validator