| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnsuc | Structured version Visualization version Unicode version | ||
| Description: A nonzero natural number is a successor. (Contributed by NM, 18-Feb-2004.) |
| Ref | Expression |
|---|---|
| nnsuc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnlim 7078 |
. . . 4
| |
| 2 | 1 | adantr 481 |
. . 3
|
| 3 | nnord 7073 |
. . . 4
| |
| 4 | orduninsuc 7043 |
. . . . . 6
| |
| 5 | 4 | adantr 481 |
. . . . 5
|
| 6 | df-lim 5728 |
. . . . . . 7
| |
| 7 | 6 | biimpri 218 |
. . . . . 6
|
| 8 | 7 | 3expia 1267 |
. . . . 5
|
| 9 | 5, 8 | sylbird 250 |
. . . 4
|
| 10 | 3, 9 | sylan 488 |
. . 3
|
| 11 | 2, 10 | mt3d 140 |
. 2
|
| 12 | eleq1 2689 |
. . . . . . . 8
| |
| 13 | 12 | biimpcd 239 |
. . . . . . 7
|
| 14 | peano2b 7081 |
. . . . . . 7
| |
| 15 | 13, 14 | syl6ibr 242 |
. . . . . 6
|
| 16 | 15 | ancrd 577 |
. . . . 5
|
| 17 | 16 | adantld 483 |
. . . 4
|
| 18 | 17 | reximdv2 3014 |
. . 3
|
| 19 | 18 | adantr 481 |
. 2
|
| 20 | 11, 19 | mpd 15 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-om 7066 |
| This theorem is referenced by: peano5 7089 nn0suc 7090 inf3lemd 8524 infpssrlem4 9128 fin1a2lem6 9227 bnj158 30797 bnj1098 30854 bnj594 30982 |
| Copyright terms: Public domain | W3C validator |