| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-ord | Structured version Visualization version Unicode version | ||
| Description: Define the ordinal predicate, which is true for a class that is transitive and is well-ordered by the epsilon relation. Variant of definition of [BellMachover] p. 468. (Contributed by NM, 17-Sep-1993.) |
| Ref | Expression |
|---|---|
| df-ord |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA |
. . 3
| |
| 2 | 1 | word 5722 |
. 2
|
| 3 | 1 | wtr 4752 |
. . 3
|
| 4 | cep 5028 |
. . . 4
| |
| 5 | 1, 4 | wwe 5072 |
. . 3
|
| 6 | 3, 5 | wa 384 |
. 2
|
| 7 | 2, 6 | wb 196 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: ordeq 5730 ordwe 5736 ordtr 5737 trssord 5740 ordelord 5745 ord0 5777 ordon 6982 dfrecs3 7469 dford2 8517 smobeth 9408 gruina 9640 dford5 31608 dford5reg 31687 dfon2 31697 |
| Copyright terms: Public domain | W3C validator |