MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfrecs3 Structured version   Visualization version   Unicode version

Theorem dfrecs3 7469
Description: The old definition of transfinite recursion. This version is preferred for development, as it demonstrates the properties of transfinite recursion without relying on well-founded recursion. (Contributed by Scott Fenton, 3-Aug-2020.)
Assertion
Ref Expression
dfrecs3  |- recs ( F )  =  U. {
f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) }
Distinct variable group:    f, F, x, y

Proof of Theorem dfrecs3
StepHypRef Expression
1 df-recs 7468 . 2  |- recs ( F )  = wrecs (  _E  ,  On ,  F
)
2 df-wrecs 7407 . 2  |- wrecs (  _E  ,  On ,  F
)  =  U. {
f  |  E. x
( f  Fn  x  /\  ( x  C_  On  /\ 
A. y  e.  x  Pred (  _E  ,  On ,  y )  C_  x )  /\  A. y  e.  x  (
f `  y )  =  ( F `  ( f  |`  Pred (  _E  ,  On ,  y ) ) ) ) }
3 3anass 1042 . . . . . . 7  |-  ( ( f  Fn  x  /\  ( x  C_  On  /\  A. y  e.  x  Pred (  _E  ,  On ,  y )  C_  x )  /\  A. y  e.  x  (
f `  y )  =  ( F `  ( f  |`  Pred (  _E  ,  On ,  y ) ) ) )  <-> 
( f  Fn  x  /\  ( ( x  C_  On  /\  A. y  e.  x  Pred (  _E  ,  On ,  y )  C_  x )  /\  A. y  e.  x  (
f `  y )  =  ( F `  ( f  |`  Pred (  _E  ,  On ,  y ) ) ) ) ) )
4 vex 3203 . . . . . . . . . . . 12  |-  x  e. 
_V
54elon 5732 . . . . . . . . . . 11  |-  ( x  e.  On  <->  Ord  x )
6 ordsson 6989 . . . . . . . . . . . . 13  |-  ( Ord  x  ->  x  C_  On )
7 ordtr 5737 . . . . . . . . . . . . 13  |-  ( Ord  x  ->  Tr  x
)
86, 7jca 554 . . . . . . . . . . . 12  |-  ( Ord  x  ->  ( x  C_  On  /\  Tr  x
) )
9 epweon 6983 . . . . . . . . . . . . . . . 16  |-  _E  We  On
10 wess 5101 . . . . . . . . . . . . . . . 16  |-  ( x 
C_  On  ->  (  _E  We  On  ->  _E  We  x ) )
119, 10mpi 20 . . . . . . . . . . . . . . 15  |-  ( x 
C_  On  ->  _E  We  x )
1211anim2i 593 . . . . . . . . . . . . . 14  |-  ( ( Tr  x  /\  x  C_  On )  ->  ( Tr  x  /\  _E  We  x ) )
1312ancoms 469 . . . . . . . . . . . . 13  |-  ( ( x  C_  On  /\  Tr  x )  ->  ( Tr  x  /\  _E  We  x ) )
14 df-ord 5726 . . . . . . . . . . . . 13  |-  ( Ord  x  <->  ( Tr  x  /\  _E  We  x ) )
1513, 14sylibr 224 . . . . . . . . . . . 12  |-  ( ( x  C_  On  /\  Tr  x )  ->  Ord  x )
168, 15impbii 199 . . . . . . . . . . 11  |-  ( Ord  x  <->  ( x  C_  On  /\  Tr  x ) )
17 ssel2 3598 . . . . . . . . . . . . . . 15  |-  ( ( x  C_  On  /\  y  e.  x )  ->  y  e.  On )
18 predon 6991 . . . . . . . . . . . . . . . 16  |-  ( y  e.  On  ->  Pred (  _E  ,  On ,  y )  =  y )
1918sseq1d 3632 . . . . . . . . . . . . . . 15  |-  ( y  e.  On  ->  ( Pred (  _E  ,  On ,  y )  C_  x 
<->  y  C_  x )
)
2017, 19syl 17 . . . . . . . . . . . . . 14  |-  ( ( x  C_  On  /\  y  e.  x )  ->  ( Pred (  _E  ,  On ,  y )  C_  x 
<->  y  C_  x )
)
2120ralbidva 2985 . . . . . . . . . . . . 13  |-  ( x 
C_  On  ->  ( A. y  e.  x  Pred (  _E  ,  On ,  y )  C_  x 
<-> 
A. y  e.  x  y  C_  x ) )
22 dftr3 4756 . . . . . . . . . . . . 13  |-  ( Tr  x  <->  A. y  e.  x  y  C_  x )
2321, 22syl6rbbr 279 . . . . . . . . . . . 12  |-  ( x 
C_  On  ->  ( Tr  x  <->  A. y  e.  x  Pred (  _E  ,  On ,  y )  C_  x ) )
2423pm5.32i 669 . . . . . . . . . . 11  |-  ( ( x  C_  On  /\  Tr  x )  <->  ( x  C_  On  /\  A. y  e.  x  Pred (  _E  ,  On ,  y )  C_  x )
)
255, 16, 243bitri 286 . . . . . . . . . 10  |-  ( x  e.  On  <->  ( x  C_  On  /\  A. y  e.  x  Pred (  _E  ,  On ,  y )  C_  x )
)
2625anbi1i 731 . . . . . . . . 9  |-  ( ( x  e.  On  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  Pred (  _E  ,  On ,  y ) ) ) )  <-> 
( ( x  C_  On  /\  A. y  e.  x  Pred (  _E  ,  On ,  y )  C_  x )  /\  A. y  e.  x  (
f `  y )  =  ( F `  ( f  |`  Pred (  _E  ,  On ,  y ) ) ) ) )
27 onelon 5748 . . . . . . . . . . . 12  |-  ( ( x  e.  On  /\  y  e.  x )  ->  y  e.  On )
2818reseq2d 5396 . . . . . . . . . . . . . 14  |-  ( y  e.  On  ->  (
f  |`  Pred (  _E  ,  On ,  y )
)  =  ( f  |`  y ) )
2928fveq2d 6195 . . . . . . . . . . . . 13  |-  ( y  e.  On  ->  ( F `  ( f  |` 
Pred (  _E  ,  On ,  y )
) )  =  ( F `  ( f  |`  y ) ) )
3029eqeq2d 2632 . . . . . . . . . . . 12  |-  ( y  e.  On  ->  (
( f `  y
)  =  ( F `
 ( f  |`  Pred (  _E  ,  On ,  y ) ) )  <->  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) )
3127, 30syl 17 . . . . . . . . . . 11  |-  ( ( x  e.  On  /\  y  e.  x )  ->  ( ( f `  y )  =  ( F `  ( f  |`  Pred (  _E  ,  On ,  y )
) )  <->  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) )
3231ralbidva 2985 . . . . . . . . . 10  |-  ( x  e.  On  ->  ( A. y  e.  x  ( f `  y
)  =  ( F `
 ( f  |`  Pred (  _E  ,  On ,  y ) ) )  <->  A. y  e.  x  ( f `  y
)  =  ( F `
 ( f  |`  y ) ) ) )
3332pm5.32i 669 . . . . . . . . 9  |-  ( ( x  e.  On  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  Pred (  _E  ,  On ,  y ) ) ) )  <-> 
( x  e.  On  /\ 
A. y  e.  x  ( f `  y
)  =  ( F `
 ( f  |`  y ) ) ) )
3426, 33bitr3i 266 . . . . . . . 8  |-  ( ( ( x  C_  On  /\ 
A. y  e.  x  Pred (  _E  ,  On ,  y )  C_  x )  /\  A. y  e.  x  (
f `  y )  =  ( F `  ( f  |`  Pred (  _E  ,  On ,  y ) ) ) )  <-> 
( x  e.  On  /\ 
A. y  e.  x  ( f `  y
)  =  ( F `
 ( f  |`  y ) ) ) )
3534anbi2i 730 . . . . . . 7  |-  ( ( f  Fn  x  /\  ( ( x  C_  On  /\  A. y  e.  x  Pred (  _E  ,  On ,  y )  C_  x )  /\  A. y  e.  x  (
f `  y )  =  ( F `  ( f  |`  Pred (  _E  ,  On ,  y ) ) ) ) )  <->  ( f  Fn  x  /\  ( x  e.  On  /\  A. y  e.  x  (
f `  y )  =  ( F `  ( f  |`  y
) ) ) ) )
36 an12 838 . . . . . . 7  |-  ( ( f  Fn  x  /\  ( x  e.  On  /\ 
A. y  e.  x  ( f `  y
)  =  ( F `
 ( f  |`  y ) ) ) )  <->  ( x  e.  On  /\  ( f  Fn  x  /\  A. y  e.  x  (
f `  y )  =  ( F `  ( f  |`  y
) ) ) ) )
373, 35, 363bitri 286 . . . . . 6  |-  ( ( f  Fn  x  /\  ( x  C_  On  /\  A. y  e.  x  Pred (  _E  ,  On ,  y )  C_  x )  /\  A. y  e.  x  (
f `  y )  =  ( F `  ( f  |`  Pred (  _E  ,  On ,  y ) ) ) )  <-> 
( x  e.  On  /\  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( F `
 ( f  |`  y ) ) ) ) )
3837exbii 1774 . . . . 5  |-  ( E. x ( f  Fn  x  /\  ( x 
C_  On  /\  A. y  e.  x  Pred (  _E  ,  On ,  y )  C_  x )  /\  A. y  e.  x  ( f `  y
)  =  ( F `
 ( f  |`  Pred (  _E  ,  On ,  y ) ) ) )  <->  E. x
( x  e.  On  /\  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( F `
 ( f  |`  y ) ) ) ) )
39 df-rex 2918 . . . . 5  |-  ( E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) )  <->  E. x
( x  e.  On  /\  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( F `
 ( f  |`  y ) ) ) ) )
4038, 39bitr4i 267 . . . 4  |-  ( E. x ( f  Fn  x  /\  ( x 
C_  On  /\  A. y  e.  x  Pred (  _E  ,  On ,  y )  C_  x )  /\  A. y  e.  x  ( f `  y
)  =  ( F `
 ( f  |`  Pred (  _E  ,  On ,  y ) ) ) )  <->  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) )
4140abbii 2739 . . 3  |-  { f  |  E. x ( f  Fn  x  /\  ( x  C_  On  /\  A. y  e.  x  Pred (  _E  ,  On ,  y )  C_  x )  /\  A. y  e.  x  (
f `  y )  =  ( F `  ( f  |`  Pred (  _E  ,  On ,  y ) ) ) ) }  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) }
4241unieqi 4445 . 2  |-  U. {
f  |  E. x
( f  Fn  x  /\  ( x  C_  On  /\ 
A. y  e.  x  Pred (  _E  ,  On ,  y )  C_  x )  /\  A. y  e.  x  (
f `  y )  =  ( F `  ( f  |`  Pred (  _E  ,  On ,  y ) ) ) ) }  =  U. {
f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) }
431, 2, 423eqtri 2648 1  |- recs ( F )  =  U. {
f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) ) }
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913    C_ wss 3574   U.cuni 4436   Tr wtr 4752    _E cep 5028    We wwe 5072    |` cres 5116   Predcpred 5679   Ord word 5722   Oncon0 5723    Fn wfn 5883   ` cfv 5888  wrecscwrecs 7406  recscrecs 7467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-iota 5851  df-fv 5896  df-wrecs 7407  df-recs 7468
This theorem is referenced by:  recsfval  7477  tfrlem9  7481  dfrdg2  31701  dfrecs2  32057
  Copyright terms: Public domain W3C validator