Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon2 Structured version   Visualization version   Unicode version

Theorem dfon2 31697
Description:  On consists of all sets that contain all its transitive proper subsets. This definition comes from J. R. Isbell, "A Definition of Ordinal Numbers," American Mathematical Monthly, vol 67 (1960), pp. 51-52. (Contributed by Scott Fenton, 20-Feb-2011.)
Assertion
Ref Expression
dfon2  |-  On  =  { x  |  A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x ) }
Distinct variable group:    x, y

Proof of Theorem dfon2
Dummy variables  z  w  t  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-on 5727 . 2  |-  On  =  { x  |  Ord  x }
2 tz7.7 5749 . . . . . . . . 9  |-  ( ( Ord  x  /\  Tr  y )  ->  (
y  e.  x  <->  ( y  C_  x  /\  y  =/=  x ) ) )
3 df-pss 3590 . . . . . . . . 9  |-  ( y 
C.  x  <->  ( y  C_  x  /\  y  =/=  x ) )
42, 3syl6bbr 278 . . . . . . . 8  |-  ( ( Ord  x  /\  Tr  y )  ->  (
y  e.  x  <->  y  C.  x
) )
54exbiri 652 . . . . . . 7  |-  ( Ord  x  ->  ( Tr  y  ->  ( y  C.  x  ->  y  e.  x
) ) )
65com23 86 . . . . . 6  |-  ( Ord  x  ->  ( y  C.  x  ->  ( Tr  y  ->  y  e.  x
) ) )
76impd 447 . . . . 5  |-  ( Ord  x  ->  ( (
y  C.  x  /\  Tr  y )  ->  y  e.  x ) )
87alrimiv 1855 . . . 4  |-  ( Ord  x  ->  A. y
( ( y  C.  x  /\  Tr  y )  ->  y  e.  x
) )
9 vex 3203 . . . . . . 7  |-  x  e. 
_V
10 dfon2lem3 31690 . . . . . . 7  |-  ( x  e.  _V  ->  ( A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x )  ->  ( Tr  x  /\  A. z  e.  x  -.  z  e.  z ) ) )
119, 10ax-mp 5 . . . . . 6  |-  ( A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x )  ->  ( Tr  x  /\  A. z  e.  x  -.  z  e.  z ) )
1211simpld 475 . . . . 5  |-  ( A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x )  ->  Tr  x )
139dfon2lem7 31694 . . . . . . . 8  |-  ( A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x )  ->  (
t  e.  x  ->  A. u ( ( u 
C.  t  /\  Tr  u )  ->  u  e.  t ) ) )
1413ralrimiv 2965 . . . . . . 7  |-  ( A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x )  ->  A. t  e.  x  A. u
( ( u  C.  t  /\  Tr  u )  ->  u  e.  t ) )
15 dfon2lem9 31696 . . . . . . . 8  |-  ( A. t  e.  x  A. u ( ( u 
C.  t  /\  Tr  u )  ->  u  e.  t )  ->  _E  Fr  x )
16 psseq2 3695 . . . . . . . . . . . . . . . 16  |-  ( t  =  z  ->  (
u  C.  t  <->  u  C.  z
) )
1716anbi1d 741 . . . . . . . . . . . . . . 15  |-  ( t  =  z  ->  (
( u  C.  t  /\  Tr  u )  <->  ( u  C.  z  /\  Tr  u
) ) )
18 elequ2 2004 . . . . . . . . . . . . . . 15  |-  ( t  =  z  ->  (
u  e.  t  <->  u  e.  z ) )
1917, 18imbi12d 334 . . . . . . . . . . . . . 14  |-  ( t  =  z  ->  (
( ( u  C.  t  /\  Tr  u )  ->  u  e.  t )  <->  ( ( u 
C.  z  /\  Tr  u )  ->  u  e.  z ) ) )
2019albidv 1849 . . . . . . . . . . . . 13  |-  ( t  =  z  ->  ( A. u ( ( u 
C.  t  /\  Tr  u )  ->  u  e.  t )  <->  A. u
( ( u  C.  z  /\  Tr  u )  ->  u  e.  z ) ) )
21 psseq1 3694 . . . . . . . . . . . . . . . 16  |-  ( u  =  v  ->  (
u  C.  z  <->  v  C.  z
) )
22 treq 4758 . . . . . . . . . . . . . . . 16  |-  ( u  =  v  ->  ( Tr  u  <->  Tr  v )
)
2321, 22anbi12d 747 . . . . . . . . . . . . . . 15  |-  ( u  =  v  ->  (
( u  C.  z  /\  Tr  u )  <->  ( v  C.  z  /\  Tr  v
) ) )
24 elequ1 1997 . . . . . . . . . . . . . . 15  |-  ( u  =  v  ->  (
u  e.  z  <->  v  e.  z ) )
2523, 24imbi12d 334 . . . . . . . . . . . . . 14  |-  ( u  =  v  ->  (
( ( u  C.  z  /\  Tr  u )  ->  u  e.  z )  <->  ( ( v 
C.  z  /\  Tr  v )  ->  v  e.  z ) ) )
2625cbvalv 2273 . . . . . . . . . . . . 13  |-  ( A. u ( ( u 
C.  z  /\  Tr  u )  ->  u  e.  z )  <->  A. v
( ( v  C.  z  /\  Tr  v )  ->  v  e.  z ) )
2720, 26syl6bb 276 . . . . . . . . . . . 12  |-  ( t  =  z  ->  ( A. u ( ( u 
C.  t  /\  Tr  u )  ->  u  e.  t )  <->  A. v
( ( v  C.  z  /\  Tr  v )  ->  v  e.  z ) ) )
2827rspccv 3306 . . . . . . . . . . 11  |-  ( A. t  e.  x  A. u ( ( u 
C.  t  /\  Tr  u )  ->  u  e.  t )  ->  (
z  e.  x  ->  A. v ( ( v 
C.  z  /\  Tr  v )  ->  v  e.  z ) ) )
29 psseq2 3695 . . . . . . . . . . . . . . . 16  |-  ( t  =  w  ->  (
u  C.  t  <->  u  C.  w
) )
3029anbi1d 741 . . . . . . . . . . . . . . 15  |-  ( t  =  w  ->  (
( u  C.  t  /\  Tr  u )  <->  ( u  C.  w  /\  Tr  u
) ) )
31 elequ2 2004 . . . . . . . . . . . . . . 15  |-  ( t  =  w  ->  (
u  e.  t  <->  u  e.  w ) )
3230, 31imbi12d 334 . . . . . . . . . . . . . 14  |-  ( t  =  w  ->  (
( ( u  C.  t  /\  Tr  u )  ->  u  e.  t )  <->  ( ( u 
C.  w  /\  Tr  u )  ->  u  e.  w ) ) )
3332albidv 1849 . . . . . . . . . . . . 13  |-  ( t  =  w  ->  ( A. u ( ( u 
C.  t  /\  Tr  u )  ->  u  e.  t )  <->  A. u
( ( u  C.  w  /\  Tr  u )  ->  u  e.  w
) ) )
34 psseq1 3694 . . . . . . . . . . . . . . . 16  |-  ( u  =  y  ->  (
u  C.  w  <->  y  C.  w
) )
35 treq 4758 . . . . . . . . . . . . . . . 16  |-  ( u  =  y  ->  ( Tr  u  <->  Tr  y )
)
3634, 35anbi12d 747 . . . . . . . . . . . . . . 15  |-  ( u  =  y  ->  (
( u  C.  w  /\  Tr  u )  <->  ( y  C.  w  /\  Tr  y
) ) )
37 elequ1 1997 . . . . . . . . . . . . . . 15  |-  ( u  =  y  ->  (
u  e.  w  <->  y  e.  w ) )
3836, 37imbi12d 334 . . . . . . . . . . . . . 14  |-  ( u  =  y  ->  (
( ( u  C.  w  /\  Tr  u )  ->  u  e.  w
)  <->  ( ( y 
C.  w  /\  Tr  y )  ->  y  e.  w ) ) )
3938cbvalv 2273 . . . . . . . . . . . . 13  |-  ( A. u ( ( u 
C.  w  /\  Tr  u )  ->  u  e.  w )  <->  A. y
( ( y  C.  w  /\  Tr  y )  ->  y  e.  w
) )
4033, 39syl6bb 276 . . . . . . . . . . . 12  |-  ( t  =  w  ->  ( A. u ( ( u 
C.  t  /\  Tr  u )  ->  u  e.  t )  <->  A. y
( ( y  C.  w  /\  Tr  y )  ->  y  e.  w
) ) )
4140rspccv 3306 . . . . . . . . . . 11  |-  ( A. t  e.  x  A. u ( ( u 
C.  t  /\  Tr  u )  ->  u  e.  t )  ->  (
w  e.  x  ->  A. y ( ( y 
C.  w  /\  Tr  y )  ->  y  e.  w ) ) )
4228, 41anim12d 586 . . . . . . . . . 10  |-  ( A. t  e.  x  A. u ( ( u 
C.  t  /\  Tr  u )  ->  u  e.  t )  ->  (
( z  e.  x  /\  w  e.  x
)  ->  ( A. v ( ( v 
C.  z  /\  Tr  v )  ->  v  e.  z )  /\  A. y ( ( y 
C.  w  /\  Tr  y )  ->  y  e.  w ) ) ) )
43 vex 3203 . . . . . . . . . . 11  |-  z  e. 
_V
44 vex 3203 . . . . . . . . . . 11  |-  w  e. 
_V
4543, 44dfon2lem5 31692 . . . . . . . . . 10  |-  ( ( A. v ( ( v  C.  z  /\  Tr  v )  ->  v  e.  z )  /\  A. y ( ( y 
C.  w  /\  Tr  y )  ->  y  e.  w ) )  -> 
( z  e.  w  \/  z  =  w  \/  w  e.  z
) )
4642, 45syl6 35 . . . . . . . . 9  |-  ( A. t  e.  x  A. u ( ( u 
C.  t  /\  Tr  u )  ->  u  e.  t )  ->  (
( z  e.  x  /\  w  e.  x
)  ->  ( z  e.  w  \/  z  =  w  \/  w  e.  z ) ) )
4746ralrimivv 2970 . . . . . . . 8  |-  ( A. t  e.  x  A. u ( ( u 
C.  t  /\  Tr  u )  ->  u  e.  t )  ->  A. z  e.  x  A. w  e.  x  ( z  e.  w  \/  z  =  w  \/  w  e.  z ) )
4815, 47jca 554 . . . . . . 7  |-  ( A. t  e.  x  A. u ( ( u 
C.  t  /\  Tr  u )  ->  u  e.  t )  ->  (  _E  Fr  x  /\  A. z  e.  x  A. w  e.  x  (
z  e.  w  \/  z  =  w  \/  w  e.  z ) ) )
4914, 48syl 17 . . . . . 6  |-  ( A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x )  ->  (  _E  Fr  x  /\  A. z  e.  x  A. w  e.  x  (
z  e.  w  \/  z  =  w  \/  w  e.  z ) ) )
50 dfwe2 6981 . . . . . . 7  |-  (  _E  We  x  <->  (  _E  Fr  x  /\  A. z  e.  x  A. w  e.  x  ( z  _E  w  \/  z  =  w  \/  w  _E  z ) ) )
51 epel 5032 . . . . . . . . . 10  |-  ( z  _E  w  <->  z  e.  w )
52 biid 251 . . . . . . . . . 10  |-  ( z  =  w  <->  z  =  w )
53 epel 5032 . . . . . . . . . 10  |-  ( w  _E  z  <->  w  e.  z )
5451, 52, 533orbi123i 1252 . . . . . . . . 9  |-  ( ( z  _E  w  \/  z  =  w  \/  w  _E  z )  <-> 
( z  e.  w  \/  z  =  w  \/  w  e.  z
) )
55542ralbii 2981 . . . . . . . 8  |-  ( A. z  e.  x  A. w  e.  x  (
z  _E  w  \/  z  =  w  \/  w  _E  z )  <->  A. z  e.  x  A. w  e.  x  ( z  e.  w  \/  z  =  w  \/  w  e.  z
) )
5655anbi2i 730 . . . . . . 7  |-  ( (  _E  Fr  x  /\  A. z  e.  x  A. w  e.  x  (
z  _E  w  \/  z  =  w  \/  w  _E  z ) )  <->  (  _E  Fr  x  /\  A. z  e.  x  A. w  e.  x  ( z  e.  w  \/  z  =  w  \/  w  e.  z ) ) )
5750, 56bitri 264 . . . . . 6  |-  (  _E  We  x  <->  (  _E  Fr  x  /\  A. z  e.  x  A. w  e.  x  ( z  e.  w  \/  z  =  w  \/  w  e.  z ) ) )
5849, 57sylibr 224 . . . . 5  |-  ( A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x )  ->  _E  We  x )
59 df-ord 5726 . . . . 5  |-  ( Ord  x  <->  ( Tr  x  /\  _E  We  x ) )
6012, 58, 59sylanbrc 698 . . . 4  |-  ( A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x )  ->  Ord  x )
618, 60impbii 199 . . 3  |-  ( Ord  x  <->  A. y ( ( y  C.  x  /\  Tr  y )  ->  y  e.  x ) )
6261abbii 2739 . 2  |-  { x  |  Ord  x }  =  { x  |  A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x ) }
631, 62eqtri 2644 1  |-  On  =  { x  |  A. y ( ( y 
C.  x  /\  Tr  y )  ->  y  e.  x ) }
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    \/ w3o 1036   A.wal 1481    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   _Vcvv 3200    C_ wss 3574    C. wpss 3575   class class class wbr 4653   Tr wtr 4752    _E cep 5028    Fr wfr 5070    We wwe 5072   Ord word 5722   Oncon0 5723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-suc 5729
This theorem is referenced by:  dfon3  31999
  Copyright terms: Public domain W3C validator