MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gruina Structured version   Visualization version   Unicode version

Theorem gruina 9640
Description: If a Grothendieck universe  U is nonempty, then the height of the ordinals in  U is a strongly inaccessible cardinal. (Contributed by Mario Carneiro, 17-Jun-2013.)
Hypothesis
Ref Expression
gruina.1  |-  A  =  ( U  i^i  On )
Assertion
Ref Expression
gruina  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  A  e.  Inacc )

Proof of Theorem gruina
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 3931 . . . 4  |-  ( U  =/=  (/)  <->  E. x  x  e.  U )
2 0ss 3972 . . . . . . . . . 10  |-  (/)  C_  x
3 gruss 9618 . . . . . . . . . 10  |-  ( ( U  e.  Univ  /\  x  e.  U  /\  (/)  C_  x
)  ->  (/)  e.  U
)
42, 3mp3an3 1413 . . . . . . . . 9  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  (/)  e.  U
)
5 0elon 5778 . . . . . . . . 9  |-  (/)  e.  On
6 elin 3796 . . . . . . . . 9  |-  ( (/)  e.  ( U  i^i  On ) 
<->  ( (/)  e.  U  /\  (/)  e.  On ) )
74, 5, 6sylanblrc 697 . . . . . . . 8  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  (/)  e.  ( U  i^i  On ) )
8 gruina.1 . . . . . . . 8  |-  A  =  ( U  i^i  On )
97, 8syl6eleqr 2712 . . . . . . 7  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  (/)  e.  A
)
10 ne0i 3921 . . . . . . 7  |-  ( (/)  e.  A  ->  A  =/=  (/) )
119, 10syl 17 . . . . . 6  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  A  =/=  (/) )
1211expcom 451 . . . . 5  |-  ( x  e.  U  ->  ( U  e.  Univ  ->  A  =/=  (/) ) )
1312exlimiv 1858 . . . 4  |-  ( E. x  x  e.  U  ->  ( U  e.  Univ  ->  A  =/=  (/) ) )
141, 13sylbi 207 . . 3  |-  ( U  =/=  (/)  ->  ( U  e.  Univ  ->  A  =/=  (/) ) )
1514impcom 446 . 2  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  A  =/=  (/) )
16 grutr 9615 . . . . . . . 8  |-  ( U  e.  Univ  ->  Tr  U
)
17 tron 5746 . . . . . . . 8  |-  Tr  On
18 trin 4763 . . . . . . . 8  |-  ( ( Tr  U  /\  Tr  On )  ->  Tr  ( U  i^i  On ) )
1916, 17, 18sylancl 694 . . . . . . 7  |-  ( U  e.  Univ  ->  Tr  ( U  i^i  On ) )
20 inss2 3834 . . . . . . . 8  |-  ( U  i^i  On )  C_  On
21 epweon 6983 . . . . . . . 8  |-  _E  We  On
22 wess 5101 . . . . . . . 8  |-  ( ( U  i^i  On ) 
C_  On  ->  (  _E  We  On  ->  _E  We  ( U  i^i  On ) ) )
2320, 21, 22mp2 9 . . . . . . 7  |-  _E  We  ( U  i^i  On )
24 df-ord 5726 . . . . . . 7  |-  ( Ord  ( U  i^i  On ) 
<->  ( Tr  ( U  i^i  On )  /\  _E  We  ( U  i^i  On ) ) )
2519, 23, 24sylanblrc 697 . . . . . 6  |-  ( U  e.  Univ  ->  Ord  ( U  i^i  On ) )
26 inex1g 4801 . . . . . 6  |-  ( U  e.  Univ  ->  ( U  i^i  On )  e. 
_V )
27 elon2 5734 . . . . . 6  |-  ( ( U  i^i  On )  e.  On  <->  ( Ord  ( U  i^i  On )  /\  ( U  i^i  On )  e.  _V )
)
2825, 26, 27sylanbrc 698 . . . . 5  |-  ( U  e.  Univ  ->  ( U  i^i  On )  e.  On )
298, 28syl5eqel 2705 . . . 4  |-  ( U  e.  Univ  ->  A  e.  On )
3029adantr 481 . . 3  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  A  e.  On )
31 eloni 5733 . . . . . . 7  |-  ( A  e.  On  ->  Ord  A )
32 ordirr 5741 . . . . . . 7  |-  ( Ord 
A  ->  -.  A  e.  A )
3331, 32syl 17 . . . . . 6  |-  ( A  e.  On  ->  -.  A  e.  A )
34 elin 3796 . . . . . . . . 9  |-  ( A  e.  ( U  i^i  On )  <->  ( A  e.  U  /\  A  e.  On ) )
3534biimpri 218 . . . . . . . 8  |-  ( ( A  e.  U  /\  A  e.  On )  ->  A  e.  ( U  i^i  On ) )
3635, 8syl6eleqr 2712 . . . . . . 7  |-  ( ( A  e.  U  /\  A  e.  On )  ->  A  e.  A )
3736expcom 451 . . . . . 6  |-  ( A  e.  On  ->  ( A  e.  U  ->  A  e.  A ) )
3833, 37mtod 189 . . . . 5  |-  ( A  e.  On  ->  -.  A  e.  U )
3930, 38syl 17 . . . 4  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  -.  A  e.  U )
40 inss1 3833 . . . . . . . . . . . . . . . 16  |-  ( U  i^i  On )  C_  U
418, 40eqsstri 3635 . . . . . . . . . . . . . . 15  |-  A  C_  U
4241sseli 3599 . . . . . . . . . . . . . 14  |-  ( x  e.  A  ->  x  e.  U )
43 vpwex 4849 . . . . . . . . . . . . . . . 16  |-  ~P x  e.  _V
4443canth2 8113 . . . . . . . . . . . . . . 15  |-  ~P x  ~<  ~P ~P x
4543pwex 4848 . . . . . . . . . . . . . . . . . 18  |-  ~P ~P x  e.  _V
4645cardid 9369 . . . . . . . . . . . . . . . . 17  |-  ( card `  ~P ~P x ) 
~~  ~P ~P x
4746ensymi 8006 . . . . . . . . . . . . . . . 16  |-  ~P ~P x  ~~  ( card `  ~P ~P x )
4829adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  A  e.  On )
49 grupw 9617 . . . . . . . . . . . . . . . . . . 19  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  ~P x  e.  U )
50 grupw 9617 . . . . . . . . . . . . . . . . . . 19  |-  ( ( U  e.  Univ  /\  ~P x  e.  U )  ->  ~P ~P x  e.  U )
5149, 50syldan 487 . . . . . . . . . . . . . . . . . 18  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  ~P ~P x  e.  U
)
5229adantr 481 . . . . . . . . . . . . . . . . . . 19  |-  ( ( U  e.  Univ  /\  ~P ~P x  e.  U
)  ->  A  e.  On )
53 endom 7982 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
card `  ~P ~P x
)  ~~  ~P ~P x  ->  ( card `  ~P ~P x )  ~<_  ~P ~P x )
5446, 53ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21  |-  ( card `  ~P ~P x )  ~<_  ~P ~P x
55 cardon 8770 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( card `  ~P ~P x )  e.  On
56 grudomon 9639 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( U  e.  Univ  /\  ( card `  ~P ~P x
)  e.  On  /\  ( ~P ~P x  e.  U  /\  ( card `  ~P ~P x )  ~<_  ~P ~P x ) )  ->  ( card `  ~P ~P x )  e.  U )
5755, 56mp3an2 1412 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( U  e.  Univ  /\  ( ~P ~P x  e.  U  /\  ( card `  ~P ~P x )  ~<_  ~P ~P x ) )  -> 
( card `  ~P ~P x
)  e.  U )
5854, 57mpanr2 720 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( U  e.  Univ  /\  ~P ~P x  e.  U
)  ->  ( card `  ~P ~P x )  e.  U )
59 elin 3796 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
card `  ~P ~P x
)  e.  ( U  i^i  On )  <->  ( ( card `  ~P ~P x
)  e.  U  /\  ( card `  ~P ~P x
)  e.  On ) )
6059biimpri 218 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( card `  ~P ~P x )  e.  U  /\  ( card `  ~P ~P x )  e.  On )  ->  ( card `  ~P ~P x )  e.  ( U  i^i  On ) )
6160, 8syl6eleqr 2712 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( card `  ~P ~P x )  e.  U  /\  ( card `  ~P ~P x )  e.  On )  ->  ( card `  ~P ~P x )  e.  A
)
6258, 55, 61sylancl 694 . . . . . . . . . . . . . . . . . . 19  |-  ( ( U  e.  Univ  /\  ~P ~P x  e.  U
)  ->  ( card `  ~P ~P x )  e.  A )
63 onelss 5766 . . . . . . . . . . . . . . . . . . 19  |-  ( A  e.  On  ->  (
( card `  ~P ~P x
)  e.  A  -> 
( card `  ~P ~P x
)  C_  A )
)
6452, 62, 63sylc 65 . . . . . . . . . . . . . . . . . 18  |-  ( ( U  e.  Univ  /\  ~P ~P x  e.  U
)  ->  ( card `  ~P ~P x ) 
C_  A )
6551, 64syldan 487 . . . . . . . . . . . . . . . . 17  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  ( card `  ~P ~P x
)  C_  A )
66 ssdomg 8001 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  On  ->  (
( card `  ~P ~P x
)  C_  A  ->  (
card `  ~P ~P x
)  ~<_  A ) )
6748, 65, 66sylc 65 . . . . . . . . . . . . . . . 16  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  ( card `  ~P ~P x
)  ~<_  A )
68 endomtr 8014 . . . . . . . . . . . . . . . 16  |-  ( ( ~P ~P x  ~~  ( card `  ~P ~P x
)  /\  ( card `  ~P ~P x )  ~<_  A )  ->  ~P ~P x  ~<_  A )
6947, 67, 68sylancr 695 . . . . . . . . . . . . . . 15  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  ~P ~P x  ~<_  A )
70 sdomdomtr 8093 . . . . . . . . . . . . . . 15  |-  ( ( ~P x  ~<  ~P ~P x  /\  ~P ~P x  ~<_  A )  ->  ~P x  ~<  A )
7144, 69, 70sylancr 695 . . . . . . . . . . . . . 14  |-  ( ( U  e.  Univ  /\  x  e.  U )  ->  ~P x  ~<  A )
7242, 71sylan2 491 . . . . . . . . . . . . 13  |-  ( ( U  e.  Univ  /\  x  e.  A )  ->  ~P x  ~<  A )
7372ralrimiva 2966 . . . . . . . . . . . 12  |-  ( U  e.  Univ  ->  A. x  e.  A  ~P x  ~<  A )
74 inawinalem 9511 . . . . . . . . . . . 12  |-  ( A  e.  On  ->  ( A. x  e.  A  ~P x  ~<  A  ->  A. x  e.  A  E. y  e.  A  x  ~<  y ) )
7529, 73, 74sylc 65 . . . . . . . . . . 11  |-  ( U  e.  Univ  ->  A. x  e.  A  E. y  e.  A  x  ~<  y )
7675adantr 481 . . . . . . . . . 10  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  A. x  e.  A  E. y  e.  A  x  ~<  y )
77 winainflem 9515 . . . . . . . . . 10  |-  ( ( A  =/=  (/)  /\  A  e.  On  /\  A. x  e.  A  E. y  e.  A  x  ~<  y )  ->  om  C_  A
)
7815, 30, 76, 77syl3anc 1326 . . . . . . . . 9  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  om  C_  A
)
79 vex 3203 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
8079canth2 8113 . . . . . . . . . . . . . 14  |-  x  ~<  ~P x
81 sdomtr 8098 . . . . . . . . . . . . . 14  |-  ( ( x  ~<  ~P x  /\  ~P x  ~<  A )  ->  x  ~<  A )
8280, 72, 81sylancr 695 . . . . . . . . . . . . 13  |-  ( ( U  e.  Univ  /\  x  e.  A )  ->  x  ~<  A )
8382ralrimiva 2966 . . . . . . . . . . . 12  |-  ( U  e.  Univ  ->  A. x  e.  A  x  ~<  A )
84 iscard 8801 . . . . . . . . . . . 12  |-  ( (
card `  A )  =  A  <->  ( A  e.  On  /\  A. x  e.  A  x  ~<  A ) )
8529, 83, 84sylanbrc 698 . . . . . . . . . . 11  |-  ( U  e.  Univ  ->  ( card `  A )  =  A )
86 cardlim 8798 . . . . . . . . . . . 12  |-  ( om  C_  ( card `  A
)  <->  Lim  ( card `  A
) )
87 sseq2 3627 . . . . . . . . . . . . 13  |-  ( (
card `  A )  =  A  ->  ( om  C_  ( card `  A
)  <->  om  C_  A )
)
88 limeq 5735 . . . . . . . . . . . . 13  |-  ( (
card `  A )  =  A  ->  ( Lim  ( card `  A
)  <->  Lim  A ) )
8987, 88bibi12d 335 . . . . . . . . . . . 12  |-  ( (
card `  A )  =  A  ->  ( ( om  C_  ( card `  A )  <->  Lim  ( card `  A ) )  <->  ( om  C_  A  <->  Lim  A ) ) )
9086, 89mpbii 223 . . . . . . . . . . 11  |-  ( (
card `  A )  =  A  ->  ( om  C_  A  <->  Lim  A ) )
9185, 90syl 17 . . . . . . . . . 10  |-  ( U  e.  Univ  ->  ( om  C_  A  <->  Lim  A ) )
9291adantr 481 . . . . . . . . 9  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  ( om  C_  A  <->  Lim  A ) )
9378, 92mpbid 222 . . . . . . . 8  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  Lim  A )
94 cflm 9072 . . . . . . . 8  |-  ( ( A  e.  On  /\  Lim  A )  ->  ( cf `  A )  = 
|^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  = 
U. y ) ) } )
9530, 93, 94syl2anc 693 . . . . . . 7  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  ( cf `  A )  = 
|^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  = 
U. y ) ) } )
96 cardon 8770 . . . . . . . . . . . 12  |-  ( card `  y )  e.  On
97 eleq1 2689 . . . . . . . . . . . 12  |-  ( x  =  ( card `  y
)  ->  ( x  e.  On  <->  ( card `  y
)  e.  On ) )
9896, 97mpbiri 248 . . . . . . . . . . 11  |-  ( x  =  ( card `  y
)  ->  x  e.  On )
9998adantr 481 . . . . . . . . . 10  |-  ( ( x  =  ( card `  y )  /\  (
y  C_  A  /\  A  =  U. y
) )  ->  x  e.  On )
10099exlimiv 1858 . . . . . . . . 9  |-  ( E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  = 
U. y ) )  ->  x  e.  On )
101100abssi 3677 . . . . . . . 8  |-  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  = 
U. y ) ) }  C_  On
102 fvex 6201 . . . . . . . . . 10  |-  ( cf `  A )  e.  _V
10395, 102syl6eqelr 2710 . . . . . . . . 9  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  = 
U. y ) ) }  e.  _V )
104 intex 4820 . . . . . . . . 9  |-  ( { x  |  E. y
( x  =  (
card `  y )  /\  ( y  C_  A  /\  A  =  U. y ) ) }  =/=  (/)  <->  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  = 
U. y ) ) }  e.  _V )
105103, 104sylibr 224 . . . . . . . 8  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  = 
U. y ) ) }  =/=  (/) )
106 onint 6995 . . . . . . . 8  |-  ( ( { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  = 
U. y ) ) }  C_  On  /\  {
x  |  E. y
( x  =  (
card `  y )  /\  ( y  C_  A  /\  A  =  U. y ) ) }  =/=  (/) )  ->  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  = 
U. y ) ) }  e.  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  = 
U. y ) ) } )
107101, 105, 106sylancr 695 . . . . . . 7  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  = 
U. y ) ) }  e.  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  = 
U. y ) ) } )
10895, 107eqeltrd 2701 . . . . . 6  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  ( cf `  A )  e. 
{ x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  = 
U. y ) ) } )
109 eqeq1 2626 . . . . . . . . 9  |-  ( x  =  ( cf `  A
)  ->  ( x  =  ( card `  y
)  <->  ( cf `  A
)  =  ( card `  y ) ) )
110109anbi1d 741 . . . . . . . 8  |-  ( x  =  ( cf `  A
)  ->  ( (
x  =  ( card `  y )  /\  (
y  C_  A  /\  A  =  U. y
) )  <->  ( ( cf `  A )  =  ( card `  y
)  /\  ( y  C_  A  /\  A  = 
U. y ) ) ) )
111110exbidv 1850 . . . . . . 7  |-  ( x  =  ( cf `  A
)  ->  ( E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  = 
U. y ) )  <->  E. y ( ( cf `  A )  =  (
card `  y )  /\  ( y  C_  A  /\  A  =  U. y ) ) ) )
112102, 111elab 3350 . . . . . 6  |-  ( ( cf `  A )  e.  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  = 
U. y ) ) }  <->  E. y ( ( cf `  A )  =  ( card `  y
)  /\  ( y  C_  A  /\  A  = 
U. y ) ) )
113108, 112sylib 208 . . . . 5  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  E. y
( ( cf `  A
)  =  ( card `  y )  /\  (
y  C_  A  /\  A  =  U. y
) ) )
114 simp2rr 1131 . . . . . . . 8  |-  ( ( ( U  e.  Univ  /\  U  =/=  (/) )  /\  ( ( cf `  A
)  =  ( card `  y )  /\  (
y  C_  A  /\  A  =  U. y
) )  /\  ( cf `  A )  e.  A )  ->  A  =  U. y )
115 simp1l 1085 . . . . . . . . 9  |-  ( ( ( U  e.  Univ  /\  U  =/=  (/) )  /\  ( ( cf `  A
)  =  ( card `  y )  /\  (
y  C_  A  /\  A  =  U. y
) )  /\  ( cf `  A )  e.  A )  ->  U  e.  Univ )
116 simp2rl 1130 . . . . . . . . . . 11  |-  ( ( ( U  e.  Univ  /\  U  =/=  (/) )  /\  ( ( cf `  A
)  =  ( card `  y )  /\  (
y  C_  A  /\  A  =  U. y
) )  /\  ( cf `  A )  e.  A )  ->  y  C_  A )
117116, 41syl6ss 3615 . . . . . . . . . 10  |-  ( ( ( U  e.  Univ  /\  U  =/=  (/) )  /\  ( ( cf `  A
)  =  ( card `  y )  /\  (
y  C_  A  /\  A  =  U. y
) )  /\  ( cf `  A )  e.  A )  ->  y  C_  U )
11841sseli 3599 . . . . . . . . . . 11  |-  ( ( cf `  A )  e.  A  ->  ( cf `  A )  e.  U )
1191183ad2ant3 1084 . . . . . . . . . 10  |-  ( ( ( U  e.  Univ  /\  U  =/=  (/) )  /\  ( ( cf `  A
)  =  ( card `  y )  /\  (
y  C_  A  /\  A  =  U. y
) )  /\  ( cf `  A )  e.  A )  ->  ( cf `  A )  e.  U )
120 simp2l 1087 . . . . . . . . . . 11  |-  ( ( ( U  e.  Univ  /\  U  =/=  (/) )  /\  ( ( cf `  A
)  =  ( card `  y )  /\  (
y  C_  A  /\  A  =  U. y
) )  /\  ( cf `  A )  e.  A )  ->  ( cf `  A )  =  ( card `  y
) )
121 vex 3203 . . . . . . . . . . . 12  |-  y  e. 
_V
122121cardid 9369 . . . . . . . . . . 11  |-  ( card `  y )  ~~  y
123120, 122syl6eqbr 4692 . . . . . . . . . 10  |-  ( ( ( U  e.  Univ  /\  U  =/=  (/) )  /\  ( ( cf `  A
)  =  ( card `  y )  /\  (
y  C_  A  /\  A  =  U. y
) )  /\  ( cf `  A )  e.  A )  ->  ( cf `  A )  ~~  y )
124 gruen 9634 . . . . . . . . . 10  |-  ( ( U  e.  Univ  /\  y  C_  U  /\  ( ( cf `  A )  e.  U  /\  ( cf `  A )  ~~  y ) )  -> 
y  e.  U )
125115, 117, 119, 123, 124syl112anc 1330 . . . . . . . . 9  |-  ( ( ( U  e.  Univ  /\  U  =/=  (/) )  /\  ( ( cf `  A
)  =  ( card `  y )  /\  (
y  C_  A  /\  A  =  U. y
) )  /\  ( cf `  A )  e.  A )  ->  y  e.  U )
126 gruuni 9622 . . . . . . . . 9  |-  ( ( U  e.  Univ  /\  y  e.  U )  ->  U. y  e.  U )
127115, 125, 126syl2anc 693 . . . . . . . 8  |-  ( ( ( U  e.  Univ  /\  U  =/=  (/) )  /\  ( ( cf `  A
)  =  ( card `  y )  /\  (
y  C_  A  /\  A  =  U. y
) )  /\  ( cf `  A )  e.  A )  ->  U. y  e.  U )
128114, 127eqeltrd 2701 . . . . . . 7  |-  ( ( ( U  e.  Univ  /\  U  =/=  (/) )  /\  ( ( cf `  A
)  =  ( card `  y )  /\  (
y  C_  A  /\  A  =  U. y
) )  /\  ( cf `  A )  e.  A )  ->  A  e.  U )
1291283exp 1264 . . . . . 6  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  (
( ( cf `  A
)  =  ( card `  y )  /\  (
y  C_  A  /\  A  =  U. y
) )  ->  (
( cf `  A
)  e.  A  ->  A  e.  U )
) )
130129exlimdv 1861 . . . . 5  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  ( E. y ( ( cf `  A )  =  (
card `  y )  /\  ( y  C_  A  /\  A  =  U. y ) )  -> 
( ( cf `  A
)  e.  A  ->  A  e.  U )
) )
131113, 130mpd 15 . . . 4  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  (
( cf `  A
)  e.  A  ->  A  e.  U )
)
13239, 131mtod 189 . . 3  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  -.  ( cf `  A )  e.  A )
133 cfon 9077 . . . . 5  |-  ( cf `  A )  e.  On
134 cfle 9076 . . . . . 6  |-  ( cf `  A )  C_  A
135 onsseleq 5765 . . . . . 6  |-  ( ( ( cf `  A
)  e.  On  /\  A  e.  On )  ->  ( ( cf `  A
)  C_  A  <->  ( ( cf `  A )  e.  A  \/  ( cf `  A )  =  A ) ) )
136134, 135mpbii 223 . . . . 5  |-  ( ( ( cf `  A
)  e.  On  /\  A  e.  On )  ->  ( ( cf `  A
)  e.  A  \/  ( cf `  A )  =  A ) )
137133, 136mpan 706 . . . 4  |-  ( A  e.  On  ->  (
( cf `  A
)  e.  A  \/  ( cf `  A )  =  A ) )
138137ord 392 . . 3  |-  ( A  e.  On  ->  ( -.  ( cf `  A
)  e.  A  -> 
( cf `  A
)  =  A ) )
13930, 132, 138sylc 65 . 2  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  ( cf `  A )  =  A )
14073adantr 481 . 2  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  A. x  e.  A  ~P x  ~<  A )
141 elina 9509 . 2  |-  ( A  e.  Inacc 
<->  ( A  =/=  (/)  /\  ( cf `  A )  =  A  /\  A. x  e.  A  ~P x  ~<  A ) )
14215, 139, 140, 141syl3anbrc 1246 1  |-  ( ( U  e.  Univ  /\  U  =/=  (/) )  ->  A  e.  Inacc )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   U.cuni 4436   |^|cint 4475   class class class wbr 4653   Tr wtr 4752    _E cep 5028    We wwe 5072   Ord word 5722   Oncon0 5723   Lim wlim 5724   ` cfv 5888   omcom 7065    ~~ cen 7952    ~<_ cdom 7953    ~< csdm 7954   cardccrd 8761   cfccf 8763   Inacccina 9505   Univcgru 9612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-ac2 9285
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-1o 7560  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-card 8765  df-cf 8767  df-ac 8939  df-ina 9507  df-gru 9613
This theorem is referenced by:  grur1a  9641  grur1  9642  grutsk  9644
  Copyright terms: Public domain W3C validator