MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trssord Structured version   Visualization version   Unicode version

Theorem trssord 5740
Description: A transitive subclass of an ordinal class is ordinal. (Contributed by NM, 29-May-1994.)
Assertion
Ref Expression
trssord  |-  ( ( Tr  A  /\  A  C_  B  /\  Ord  B
)  ->  Ord  A )

Proof of Theorem trssord
StepHypRef Expression
1 wess 5101 . . . . 5  |-  ( A 
C_  B  ->  (  _E  We  B  ->  _E  We  A ) )
2 ordwe 5736 . . . . 5  |-  ( Ord 
B  ->  _E  We  B )
31, 2impel 485 . . . 4  |-  ( ( A  C_  B  /\  Ord  B )  ->  _E  We  A )
43anim2i 593 . . 3  |-  ( ( Tr  A  /\  ( A  C_  B  /\  Ord  B ) )  ->  ( Tr  A  /\  _E  We  A ) )
543impb 1260 . 2  |-  ( ( Tr  A  /\  A  C_  B  /\  Ord  B
)  ->  ( Tr  A  /\  _E  We  A
) )
6 df-ord 5726 . 2  |-  ( Ord 
A  <->  ( Tr  A  /\  _E  We  A ) )
75, 6sylibr 224 1  |-  ( ( Tr  A  /\  A  C_  B  /\  Ord  B
)  ->  Ord  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    C_ wss 3574   Tr wtr 4752    _E cep 5028    We wwe 5072   Ord word 5722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-ral 2917  df-in 3581  df-ss 3588  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726
This theorem is referenced by:  ordin  5753  ssorduni  6985  suceloni  7013  ordom  7074  ordtypelem2  8424  hartogs  8449  card2on  8459  tskwe  8776  ondomon  9385  dford3lem2  37594  dford3  37595  iunord  42422
  Copyright terms: Public domain W3C validator