| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orduniss | Structured version Visualization version Unicode version | ||
| Description: An ordinal class includes its union. (Contributed by NM, 13-Sep-2003.) |
| Ref | Expression |
|---|---|
| orduniss |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtr 5737 |
. 2
| |
| 2 | df-tr 4753 |
. 2
| |
| 3 | 1, 2 | sylib 208 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-tr 4753 df-ord 5726 |
| This theorem is referenced by: orduniorsuc 7030 onfununi 7438 rankuniss 8729 r1limwun 9558 ontgval 32430 |
| Copyright terms: Public domain | W3C validator |