MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onuninsuci Structured version   Visualization version   Unicode version

Theorem onuninsuci 7040
Description: A limit ordinal is not a successor ordinal. (Contributed by NM, 18-Feb-2004.)
Hypothesis
Ref Expression
onssi.1  |-  A  e.  On
Assertion
Ref Expression
onuninsuci  |-  ( A  =  U. A  <->  -.  E. x  e.  On  A  =  suc  x )
Distinct variable group:    x, A

Proof of Theorem onuninsuci
StepHypRef Expression
1 onssi.1 . . . . . . 7  |-  A  e.  On
21onirri 5834 . . . . . 6  |-  -.  A  e.  A
3 id 22 . . . . . . . 8  |-  ( A  =  U. A  ->  A  =  U. A )
4 df-suc 5729 . . . . . . . . . . . 12  |-  suc  x  =  ( x  u. 
{ x } )
54eqeq2i 2634 . . . . . . . . . . 11  |-  ( A  =  suc  x  <->  A  =  ( x  u.  { x } ) )
6 unieq 4444 . . . . . . . . . . 11  |-  ( A  =  ( x  u. 
{ x } )  ->  U. A  =  U. ( x  u.  { x } ) )
75, 6sylbi 207 . . . . . . . . . 10  |-  ( A  =  suc  x  ->  U. A  =  U. ( x  u.  { x } ) )
8 uniun 4456 . . . . . . . . . . 11  |-  U. (
x  u.  { x } )  =  ( U. x  u.  U. { x } )
9 vex 3203 . . . . . . . . . . . . 13  |-  x  e. 
_V
109unisn 4451 . . . . . . . . . . . 12  |-  U. {
x }  =  x
1110uneq2i 3764 . . . . . . . . . . 11  |-  ( U. x  u.  U. { x } )  =  ( U. x  u.  x
)
128, 11eqtri 2644 . . . . . . . . . 10  |-  U. (
x  u.  { x } )  =  ( U. x  u.  x
)
137, 12syl6eq 2672 . . . . . . . . 9  |-  ( A  =  suc  x  ->  U. A  =  ( U. x  u.  x
) )
14 tron 5746 . . . . . . . . . . . 12  |-  Tr  On
15 eleq1 2689 . . . . . . . . . . . . 13  |-  ( A  =  suc  x  -> 
( A  e.  On  <->  suc  x  e.  On ) )
161, 15mpbii 223 . . . . . . . . . . . 12  |-  ( A  =  suc  x  ->  suc  x  e.  On )
17 trsuc 5810 . . . . . . . . . . . 12  |-  ( ( Tr  On  /\  suc  x  e.  On )  ->  x  e.  On )
1814, 16, 17sylancr 695 . . . . . . . . . . 11  |-  ( A  =  suc  x  ->  x  e.  On )
19 eloni 5733 . . . . . . . . . . . . 13  |-  ( x  e.  On  ->  Ord  x )
20 ordtr 5737 . . . . . . . . . . . . 13  |-  ( Ord  x  ->  Tr  x
)
2119, 20syl 17 . . . . . . . . . . . 12  |-  ( x  e.  On  ->  Tr  x )
22 df-tr 4753 . . . . . . . . . . . 12  |-  ( Tr  x  <->  U. x  C_  x
)
2321, 22sylib 208 . . . . . . . . . . 11  |-  ( x  e.  On  ->  U. x  C_  x )
2418, 23syl 17 . . . . . . . . . 10  |-  ( A  =  suc  x  ->  U. x  C_  x )
25 ssequn1 3783 . . . . . . . . . 10  |-  ( U. x  C_  x  <->  ( U. x  u.  x )  =  x )
2624, 25sylib 208 . . . . . . . . 9  |-  ( A  =  suc  x  -> 
( U. x  u.  x )  =  x )
2713, 26eqtrd 2656 . . . . . . . 8  |-  ( A  =  suc  x  ->  U. A  =  x
)
283, 27sylan9eqr 2678 . . . . . . 7  |-  ( ( A  =  suc  x  /\  A  =  U. A )  ->  A  =  x )
299sucid 5804 . . . . . . . . 9  |-  x  e. 
suc  x
30 eleq2 2690 . . . . . . . . 9  |-  ( A  =  suc  x  -> 
( x  e.  A  <->  x  e.  suc  x ) )
3129, 30mpbiri 248 . . . . . . . 8  |-  ( A  =  suc  x  ->  x  e.  A )
3231adantr 481 . . . . . . 7  |-  ( ( A  =  suc  x  /\  A  =  U. A )  ->  x  e.  A )
3328, 32eqeltrd 2701 . . . . . 6  |-  ( ( A  =  suc  x  /\  A  =  U. A )  ->  A  e.  A )
342, 33mto 188 . . . . 5  |-  -.  ( A  =  suc  x  /\  A  =  U. A )
3534imnani 439 . . . 4  |-  ( A  =  suc  x  ->  -.  A  =  U. A )
3635rexlimivw 3029 . . 3  |-  ( E. x  e.  On  A  =  suc  x  ->  -.  A  =  U. A )
37 onuni 6993 . . . . 5  |-  ( A  e.  On  ->  U. A  e.  On )
381, 37ax-mp 5 . . . 4  |-  U. A  e.  On
391onuniorsuci 7039 . . . . 5  |-  ( A  =  U. A  \/  A  =  suc  U. A
)
4039ori 390 . . . 4  |-  ( -.  A  =  U. A  ->  A  =  suc  U. A )
41 suceq 5790 . . . . . 6  |-  ( x  =  U. A  ->  suc  x  =  suc  U. A )
4241eqeq2d 2632 . . . . 5  |-  ( x  =  U. A  -> 
( A  =  suc  x 
<->  A  =  suc  U. A ) )
4342rspcev 3309 . . . 4  |-  ( ( U. A  e.  On  /\  A  =  suc  U. A )  ->  E. x  e.  On  A  =  suc  x )
4438, 40, 43sylancr 695 . . 3  |-  ( -.  A  =  U. A  ->  E. x  e.  On  A  =  suc  x )
4536, 44impbii 199 . 2  |-  ( E. x  e.  On  A  =  suc  x  <->  -.  A  =  U. A )
4645con2bii 347 1  |-  ( A  =  U. A  <->  -.  E. x  e.  On  A  =  suc  x )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913    u. cun 3572    C_ wss 3574   {csn 4177   U.cuni 4436   Tr wtr 4752   Ord word 5722   Oncon0 5723   suc csuc 5725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-suc 5729
This theorem is referenced by:  orduninsuc  7043
  Copyright terms: Public domain W3C validator