Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfdfat2 Structured version   Visualization version   Unicode version

Theorem dfdfat2 41211
Description: Alternate definition of the predicate "defined at" not using the  Fun predicate. (Contributed by Alexander van der Vekens, 22-Jul-2017.)
Assertion
Ref Expression
dfdfat2  |-  ( F defAt 
A  <->  ( A  e. 
dom  F  /\  E! y  A F y ) )
Distinct variable groups:    y, A    y, F

Proof of Theorem dfdfat2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-dfat 41196 . 2  |-  ( F defAt 
A  <->  ( A  e. 
dom  F  /\  Fun  ( F  |`  { A }
) ) )
2 relres 5426 . . . 4  |-  Rel  ( F  |`  { A }
)
3 dffun8 5916 . . . 4  |-  ( Fun  ( F  |`  { A } )  <->  ( Rel  ( F  |`  { A } )  /\  A. x  e.  dom  ( F  |`  { A } ) E! y  x ( F  |`  { A } ) y ) )
42, 3mpbiran 953 . . 3  |-  ( Fun  ( F  |`  { A } )  <->  A. x  e.  dom  ( F  |`  { A } ) E! y  x ( F  |`  { A } ) y )
54anbi2i 730 . 2  |-  ( ( A  e.  dom  F  /\  Fun  ( F  |`  { A } ) )  <-> 
( A  e.  dom  F  /\  A. x  e. 
dom  ( F  |`  { A } ) E! y  x ( F  |`  { A } ) y ) )
6 vex 3203 . . . . . . . 8  |-  y  e. 
_V
76brres 5402 . . . . . . 7  |-  ( x ( F  |`  { A } ) y  <->  ( x F y  /\  x  e.  { A } ) )
87a1i 11 . . . . . 6  |-  ( A  e.  dom  F  -> 
( x ( F  |`  { A } ) y  <->  ( x F y  /\  x  e. 
{ A } ) ) )
98eubidv 2490 . . . . 5  |-  ( A  e.  dom  F  -> 
( E! y  x ( F  |`  { A } ) y  <->  E! y
( x F y  /\  x  e.  { A } ) ) )
109ralbidv 2986 . . . 4  |-  ( A  e.  dom  F  -> 
( A. x  e. 
dom  ( F  |`  { A } ) E! y  x ( F  |`  { A } ) y  <->  A. x  e.  dom  ( F  |`  { A } ) E! y ( x F y  /\  x  e.  { A } ) ) )
11 eldmressnsn 5439 . . . . 5  |-  ( A  e.  dom  F  ->  A  e.  dom  ( F  |`  { A } ) )
12 eldmressn 41203 . . . . 5  |-  ( x  e.  dom  ( F  |`  { A } )  ->  x  =  A )
13 breq1 4656 . . . . . . . 8  |-  ( x  =  A  ->  (
x F y  <->  A F
y ) )
1413anbi1d 741 . . . . . . 7  |-  ( x  =  A  ->  (
( x F y  /\  x  e.  { A } )  <->  ( A F y  /\  x  e.  { A } ) ) )
15 velsn 4193 . . . . . . . . 9  |-  ( x  e.  { A }  <->  x  =  A )
1615biimpri 218 . . . . . . . 8  |-  ( x  =  A  ->  x  e.  { A } )
1716biantrud 528 . . . . . . 7  |-  ( x  =  A  ->  ( A F y  <->  ( A F y  /\  x  e.  { A } ) ) )
1814, 17bitr4d 271 . . . . . 6  |-  ( x  =  A  ->  (
( x F y  /\  x  e.  { A } )  <->  A F
y ) )
1918eubidv 2490 . . . . 5  |-  ( x  =  A  ->  ( E! y ( x F y  /\  x  e. 
{ A } )  <-> 
E! y  A F y ) )
2011, 12, 19ralbinrald 41199 . . . 4  |-  ( A  e.  dom  F  -> 
( A. x  e. 
dom  ( F  |`  { A } ) E! y ( x F y  /\  x  e. 
{ A } )  <-> 
E! y  A F y ) )
2110, 20bitrd 268 . . 3  |-  ( A  e.  dom  F  -> 
( A. x  e. 
dom  ( F  |`  { A } ) E! y  x ( F  |`  { A } ) y  <->  E! y  A F y ) )
2221pm5.32i 669 . 2  |-  ( ( A  e.  dom  F  /\  A. x  e.  dom  ( F  |`  { A } ) E! y  x ( F  |`  { A } ) y )  <->  ( A  e. 
dom  F  /\  E! y  A F y ) )
231, 5, 223bitri 286 1  |-  ( F defAt 
A  <->  ( A  e. 
dom  F  /\  E! y  A F y ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E!weu 2470   A.wral 2912   {csn 4177   class class class wbr 4653   dom cdm 5114    |` cres 5116   Rel wrel 5119   Fun wfun 5882   defAt wdfat 41193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-fun 5890  df-dfat 41196
This theorem is referenced by:  afveu  41233  rlimdmafv  41257
  Copyright terms: Public domain W3C validator