MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfgrp3lem Structured version   Visualization version   Unicode version

Theorem dfgrp3lem 17513
Description: Lemma for dfgrp3 17514. (Contributed by AV, 28-Aug-2021.)
Hypotheses
Ref Expression
dfgrp3.b  |-  B  =  ( Base `  G
)
dfgrp3.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
dfgrp3lem  |-  ( ( G  e. SGrp  /\  B  =/=  (/)  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  (
l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  E. u  e.  B  A. a  e.  B  ( (
u  .+  a )  =  a  /\  E. i  e.  B  ( i  .+  a )  =  u ) )
Distinct variable groups:    B, a,
i, l, r, u, x, y    G, a, i, l, r, u, x, y    .+ , a,
i, l, r, u, x, y

Proof of Theorem dfgrp3lem
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1062 . . 3  |-  ( ( G  e. SGrp  /\  B  =/=  (/)  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  (
l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  B  =/=  (/) )
2 n0 3931 . . 3  |-  ( B  =/=  (/)  <->  E. w  w  e.  B )
31, 2sylib 208 . 2  |-  ( ( G  e. SGrp  /\  B  =/=  (/)  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  (
l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  E. w  w  e.  B )
4 oveq2 6658 . . . . . . . . . . 11  |-  ( x  =  w  ->  (
l  .+  x )  =  ( l  .+  w ) )
54eqeq1d 2624 . . . . . . . . . 10  |-  ( x  =  w  ->  (
( l  .+  x
)  =  y  <->  ( l  .+  w )  =  y ) )
65rexbidv 3052 . . . . . . . . 9  |-  ( x  =  w  ->  ( E. l  e.  B  ( l  .+  x
)  =  y  <->  E. l  e.  B  ( l  .+  w )  =  y ) )
7 oveq1 6657 . . . . . . . . . . 11  |-  ( x  =  w  ->  (
x  .+  r )  =  ( w  .+  r ) )
87eqeq1d 2624 . . . . . . . . . 10  |-  ( x  =  w  ->  (
( x  .+  r
)  =  y  <->  ( w  .+  r )  =  y ) )
98rexbidv 3052 . . . . . . . . 9  |-  ( x  =  w  ->  ( E. r  e.  B  ( x  .+  r )  =  y  <->  E. r  e.  B  ( w  .+  r )  =  y ) )
106, 9anbi12d 747 . . . . . . . 8  |-  ( x  =  w  ->  (
( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y )  <->  ( E. l  e.  B  ( l  .+  w )  =  y  /\  E. r  e.  B  ( w  .+  r )  =  y ) ) )
1110ralbidv 2986 . . . . . . 7  |-  ( x  =  w  ->  ( A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y )  <->  A. y  e.  B  ( E. l  e.  B  (
l  .+  w )  =  y  /\  E. r  e.  B  ( w  .+  r )  =  y ) ) )
1211rspcv 3305 . . . . . 6  |-  ( w  e.  B  ->  ( A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y )  ->  A. y  e.  B  ( E. l  e.  B  ( l  .+  w
)  =  y  /\  E. r  e.  B  ( w  .+  r )  =  y ) ) )
13 eqeq2 2633 . . . . . . . . . . 11  |-  ( y  =  w  ->  (
( l  .+  w
)  =  y  <->  ( l  .+  w )  =  w ) )
1413rexbidv 3052 . . . . . . . . . 10  |-  ( y  =  w  ->  ( E. l  e.  B  ( l  .+  w
)  =  y  <->  E. l  e.  B  ( l  .+  w )  =  w ) )
15 eqeq2 2633 . . . . . . . . . . 11  |-  ( y  =  w  ->  (
( w  .+  r
)  =  y  <->  ( w  .+  r )  =  w ) )
1615rexbidv 3052 . . . . . . . . . 10  |-  ( y  =  w  ->  ( E. r  e.  B  ( w  .+  r )  =  y  <->  E. r  e.  B  ( w  .+  r )  =  w ) )
1714, 16anbi12d 747 . . . . . . . . 9  |-  ( y  =  w  ->  (
( E. l  e.  B  ( l  .+  w )  =  y  /\  E. r  e.  B  ( w  .+  r )  =  y )  <->  ( E. l  e.  B  ( l  .+  w )  =  w  /\  E. r  e.  B  ( w  .+  r )  =  w ) ) )
1817rspcva 3307 . . . . . . . 8  |-  ( ( w  e.  B  /\  A. y  e.  B  ( E. l  e.  B  ( l  .+  w
)  =  y  /\  E. r  e.  B  ( w  .+  r )  =  y ) )  ->  ( E. l  e.  B  ( l  .+  w )  =  w  /\  E. r  e.  B  ( w  .+  r )  =  w ) )
19 oveq1 6657 . . . . . . . . . . . 12  |-  ( l  =  u  ->  (
l  .+  w )  =  ( u  .+  w ) )
2019eqeq1d 2624 . . . . . . . . . . 11  |-  ( l  =  u  ->  (
( l  .+  w
)  =  w  <->  ( u  .+  w )  =  w ) )
2120cbvrexv 3172 . . . . . . . . . 10  |-  ( E. l  e.  B  ( l  .+  w )  =  w  <->  E. u  e.  B  ( u  .+  w )  =  w )
2221biimpi 206 . . . . . . . . 9  |-  ( E. l  e.  B  ( l  .+  w )  =  w  ->  E. u  e.  B  ( u  .+  w )  =  w )
2322adantr 481 . . . . . . . 8  |-  ( ( E. l  e.  B  ( l  .+  w
)  =  w  /\  E. r  e.  B  ( w  .+  r )  =  w )  ->  E. u  e.  B  ( u  .+  w )  =  w )
2418, 23syl 17 . . . . . . 7  |-  ( ( w  e.  B  /\  A. y  e.  B  ( E. l  e.  B  ( l  .+  w
)  =  y  /\  E. r  e.  B  ( w  .+  r )  =  y ) )  ->  E. u  e.  B  ( u  .+  w )  =  w )
2524ex 450 . . . . . 6  |-  ( w  e.  B  ->  ( A. y  e.  B  ( E. l  e.  B  ( l  .+  w
)  =  y  /\  E. r  e.  B  ( w  .+  r )  =  y )  ->  E. u  e.  B  ( u  .+  w )  =  w ) )
2612, 25syldc 48 . . . . 5  |-  ( A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y )  -> 
( w  e.  B  ->  E. u  e.  B  ( u  .+  w )  =  w ) )
27263ad2ant3 1084 . . . 4  |-  ( ( G  e. SGrp  /\  B  =/=  (/)  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  (
l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  (
w  e.  B  ->  E. u  e.  B  ( u  .+  w )  =  w ) )
2827imp 445 . . 3  |-  ( ( ( G  e. SGrp  /\  B  =/=  (/)  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  (
l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  /\  w  e.  B )  ->  E. u  e.  B  ( u  .+  w )  =  w )
29 eqeq2 2633 . . . . . . . . . . . . . . . 16  |-  ( y  =  a  ->  (
( l  .+  w
)  =  y  <->  ( l  .+  w )  =  a ) )
3029rexbidv 3052 . . . . . . . . . . . . . . 15  |-  ( y  =  a  ->  ( E. l  e.  B  ( l  .+  w
)  =  y  <->  E. l  e.  B  ( l  .+  w )  =  a ) )
31 eqeq2 2633 . . . . . . . . . . . . . . . 16  |-  ( y  =  a  ->  (
( w  .+  r
)  =  y  <->  ( w  .+  r )  =  a ) )
3231rexbidv 3052 . . . . . . . . . . . . . . 15  |-  ( y  =  a  ->  ( E. r  e.  B  ( w  .+  r )  =  y  <->  E. r  e.  B  ( w  .+  r )  =  a ) )
3330, 32anbi12d 747 . . . . . . . . . . . . . 14  |-  ( y  =  a  ->  (
( E. l  e.  B  ( l  .+  w )  =  y  /\  E. r  e.  B  ( w  .+  r )  =  y )  <->  ( E. l  e.  B  ( l  .+  w )  =  a  /\  E. r  e.  B  ( w  .+  r )  =  a ) ) )
3410, 33rspc2va 3323 . . . . . . . . . . . . 13  |-  ( ( ( w  e.  B  /\  a  e.  B
)  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  (
l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  ( E. l  e.  B  ( l  .+  w
)  =  a  /\  E. r  e.  B  ( w  .+  r )  =  a ) )
3534simprd 479 . . . . . . . . . . . 12  |-  ( ( ( w  e.  B  /\  a  e.  B
)  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  (
l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  E. r  e.  B  ( w  .+  r )  =  a )
3635expcom 451 . . . . . . . . . . 11  |-  ( A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y )  -> 
( ( w  e.  B  /\  a  e.  B )  ->  E. r  e.  B  ( w  .+  r )  =  a ) )
37363ad2ant3 1084 . . . . . . . . . 10  |-  ( ( G  e. SGrp  /\  B  =/=  (/)  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  (
l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  (
( w  e.  B  /\  a  e.  B
)  ->  E. r  e.  B  ( w  .+  r )  =  a ) )
3837impl 650 . . . . . . . . 9  |-  ( ( ( ( G  e. SGrp  /\  B  =/=  (/)  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  /\  w  e.  B
)  /\  a  e.  B )  ->  E. r  e.  B  ( w  .+  r )  =  a )
3938ad2ant2r 783 . . . . . . . 8  |-  ( ( ( ( ( G  e. SGrp  /\  B  =/=  (/) 
/\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  /\  w  e.  B
)  /\  u  e.  B )  /\  (
a  e.  B  /\  ( u  .+  w )  =  w ) )  ->  E. r  e.  B  ( w  .+  r )  =  a )
40 oveq2 6658 . . . . . . . . . . . 12  |-  ( r  =  z  ->  (
w  .+  r )  =  ( w  .+  z ) )
4140eqeq1d 2624 . . . . . . . . . . 11  |-  ( r  =  z  ->  (
( w  .+  r
)  =  a  <->  ( w  .+  z )  =  a ) )
4241cbvrexv 3172 . . . . . . . . . 10  |-  ( E. r  e.  B  ( w  .+  r )  =  a  <->  E. z  e.  B  ( w  .+  z )  =  a )
43 simpll1 1100 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( G  e. SGrp  /\  B  =/=  (/)  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  /\  w  e.  B
)  /\  u  e.  B )  ->  G  e. SGrp )
4443adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( G  e. SGrp  /\  B  =/=  (/) 
/\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  /\  w  e.  B
)  /\  u  e.  B )  /\  (
( u  .+  w
)  =  w  /\  z  e.  B )
)  ->  G  e. SGrp )
45 simplr 792 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( G  e. SGrp  /\  B  =/=  (/) 
/\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  /\  w  e.  B
)  /\  u  e.  B )  /\  (
( u  .+  w
)  =  w  /\  z  e.  B )
)  ->  u  e.  B )
46 simpllr 799 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( G  e. SGrp  /\  B  =/=  (/) 
/\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  /\  w  e.  B
)  /\  u  e.  B )  /\  (
( u  .+  w
)  =  w  /\  z  e.  B )
)  ->  w  e.  B )
47 simprr 796 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( G  e. SGrp  /\  B  =/=  (/) 
/\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  /\  w  e.  B
)  /\  u  e.  B )  /\  (
( u  .+  w
)  =  w  /\  z  e.  B )
)  ->  z  e.  B )
48 dfgrp3.b . . . . . . . . . . . . . . . 16  |-  B  =  ( Base `  G
)
49 dfgrp3.p . . . . . . . . . . . . . . . 16  |-  .+  =  ( +g  `  G )
5048, 49sgrpass 17290 . . . . . . . . . . . . . . 15  |-  ( ( G  e. SGrp  /\  (
u  e.  B  /\  w  e.  B  /\  z  e.  B )
)  ->  ( (
u  .+  w )  .+  z )  =  ( u  .+  ( w 
.+  z ) ) )
5144, 45, 46, 47, 50syl13anc 1328 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e. SGrp  /\  B  =/=  (/) 
/\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  /\  w  e.  B
)  /\  u  e.  B )  /\  (
( u  .+  w
)  =  w  /\  z  e.  B )
)  ->  ( (
u  .+  w )  .+  z )  =  ( u  .+  ( w 
.+  z ) ) )
52 simprl 794 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( G  e. SGrp  /\  B  =/=  (/) 
/\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  /\  w  e.  B
)  /\  u  e.  B )  /\  (
( u  .+  w
)  =  w  /\  z  e.  B )
)  ->  ( u  .+  w )  =  w )
5352oveq1d 6665 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( G  e. SGrp  /\  B  =/=  (/) 
/\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  /\  w  e.  B
)  /\  u  e.  B )  /\  (
( u  .+  w
)  =  w  /\  z  e.  B )
)  ->  ( (
u  .+  w )  .+  z )  =  ( w  .+  z ) )
5451, 53eqtr3d 2658 . . . . . . . . . . . . 13  |-  ( ( ( ( ( G  e. SGrp  /\  B  =/=  (/) 
/\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  /\  w  e.  B
)  /\  u  e.  B )  /\  (
( u  .+  w
)  =  w  /\  z  e.  B )
)  ->  ( u  .+  ( w  .+  z
) )  =  ( w  .+  z ) )
5554anassrs 680 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( G  e. SGrp  /\  B  =/=  (/)  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  (
l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  /\  w  e.  B )  /\  u  e.  B )  /\  (
u  .+  w )  =  w )  /\  z  e.  B )  ->  (
u  .+  ( w  .+  z ) )  =  ( w  .+  z
) )
56 oveq2 6658 . . . . . . . . . . . . 13  |-  ( ( w  .+  z )  =  a  ->  (
u  .+  ( w  .+  z ) )  =  ( u  .+  a
) )
57 id 22 . . . . . . . . . . . . 13  |-  ( ( w  .+  z )  =  a  ->  (
w  .+  z )  =  a )
5856, 57eqeq12d 2637 . . . . . . . . . . . 12  |-  ( ( w  .+  z )  =  a  ->  (
( u  .+  (
w  .+  z )
)  =  ( w 
.+  z )  <->  ( u  .+  a )  =  a ) )
5955, 58syl5ibcom 235 . . . . . . . . . . 11  |-  ( ( ( ( ( ( G  e. SGrp  /\  B  =/=  (/)  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  (
l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  /\  w  e.  B )  /\  u  e.  B )  /\  (
u  .+  w )  =  w )  /\  z  e.  B )  ->  (
( w  .+  z
)  =  a  -> 
( u  .+  a
)  =  a ) )
6059rexlimdva 3031 . . . . . . . . . 10  |-  ( ( ( ( ( G  e. SGrp  /\  B  =/=  (/) 
/\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  /\  w  e.  B
)  /\  u  e.  B )  /\  (
u  .+  w )  =  w )  ->  ( E. z  e.  B  ( w  .+  z )  =  a  ->  (
u  .+  a )  =  a ) )
6142, 60syl5bi 232 . . . . . . . . 9  |-  ( ( ( ( ( G  e. SGrp  /\  B  =/=  (/) 
/\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  /\  w  e.  B
)  /\  u  e.  B )  /\  (
u  .+  w )  =  w )  ->  ( E. r  e.  B  ( w  .+  r )  =  a  ->  (
u  .+  a )  =  a ) )
6261adantrl 752 . . . . . . . 8  |-  ( ( ( ( ( G  e. SGrp  /\  B  =/=  (/) 
/\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  /\  w  e.  B
)  /\  u  e.  B )  /\  (
a  e.  B  /\  ( u  .+  w )  =  w ) )  ->  ( E. r  e.  B  ( w  .+  r )  =  a  ->  ( u  .+  a )  =  a ) )
6339, 62mpd 15 . . . . . . 7  |-  ( ( ( ( ( G  e. SGrp  /\  B  =/=  (/) 
/\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  /\  w  e.  B
)  /\  u  e.  B )  /\  (
a  e.  B  /\  ( u  .+  w )  =  w ) )  ->  ( u  .+  a )  =  a )
64 oveq2 6658 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  a  ->  (
l  .+  x )  =  ( l  .+  a ) )
6564eqeq1d 2624 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  a  ->  (
( l  .+  x
)  =  y  <->  ( l  .+  a )  =  y ) )
6665rexbidv 3052 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  a  ->  ( E. l  e.  B  ( l  .+  x
)  =  y  <->  E. l  e.  B  ( l  .+  a )  =  y ) )
67 oveq1 6657 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  a  ->  (
x  .+  r )  =  ( a  .+  r ) )
6867eqeq1d 2624 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  a  ->  (
( x  .+  r
)  =  y  <->  ( a  .+  r )  =  y ) )
6968rexbidv 3052 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  a  ->  ( E. r  e.  B  ( x  .+  r )  =  y  <->  E. r  e.  B  ( a  .+  r )  =  y ) )
7066, 69anbi12d 747 . . . . . . . . . . . . . . . . 17  |-  ( x  =  a  ->  (
( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y )  <->  ( E. l  e.  B  ( l  .+  a )  =  y  /\  E. r  e.  B  ( a  .+  r )  =  y ) ) )
71 eqeq2 2633 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  u  ->  (
( l  .+  a
)  =  y  <->  ( l  .+  a )  =  u ) )
7271rexbidv 3052 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  u  ->  ( E. l  e.  B  ( l  .+  a
)  =  y  <->  E. l  e.  B  ( l  .+  a )  =  u ) )
73 eqeq2 2633 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  u  ->  (
( a  .+  r
)  =  y  <->  ( a  .+  r )  =  u ) )
7473rexbidv 3052 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  u  ->  ( E. r  e.  B  ( a  .+  r
)  =  y  <->  E. r  e.  B  ( a  .+  r )  =  u ) )
7572, 74anbi12d 747 . . . . . . . . . . . . . . . . 17  |-  ( y  =  u  ->  (
( E. l  e.  B  ( l  .+  a )  =  y  /\  E. r  e.  B  ( a  .+  r )  =  y )  <->  ( E. l  e.  B  ( l  .+  a )  =  u  /\  E. r  e.  B  ( a  .+  r )  =  u ) ) )
7670, 75rspc2va 3323 . . . . . . . . . . . . . . . 16  |-  ( ( ( a  e.  B  /\  u  e.  B
)  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  (
l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  ( E. l  e.  B  ( l  .+  a
)  =  u  /\  E. r  e.  B  ( a  .+  r )  =  u ) )
7776simpld 475 . . . . . . . . . . . . . . 15  |-  ( ( ( a  e.  B  /\  u  e.  B
)  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  (
l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  E. l  e.  B  ( l  .+  a )  =  u )
7877ex 450 . . . . . . . . . . . . . 14  |-  ( ( a  e.  B  /\  u  e.  B )  ->  ( A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y )  ->  E. l  e.  B  ( l  .+  a )  =  u ) )
7978ancoms 469 . . . . . . . . . . . . 13  |-  ( ( u  e.  B  /\  a  e.  B )  ->  ( A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y )  ->  E. l  e.  B  ( l  .+  a )  =  u ) )
8079com12 32 . . . . . . . . . . . 12  |-  ( A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y )  -> 
( ( u  e.  B  /\  a  e.  B )  ->  E. l  e.  B  ( l  .+  a )  =  u ) )
81803ad2ant3 1084 . . . . . . . . . . 11  |-  ( ( G  e. SGrp  /\  B  =/=  (/)  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  (
l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  (
( u  e.  B  /\  a  e.  B
)  ->  E. l  e.  B  ( l  .+  a )  =  u ) )
8281impl 650 . . . . . . . . . 10  |-  ( ( ( ( G  e. SGrp  /\  B  =/=  (/)  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  /\  u  e.  B
)  /\  a  e.  B )  ->  E. l  e.  B  ( l  .+  a )  =  u )
83 oveq1 6657 . . . . . . . . . . . 12  |-  ( l  =  i  ->  (
l  .+  a )  =  ( i  .+  a ) )
8483eqeq1d 2624 . . . . . . . . . . 11  |-  ( l  =  i  ->  (
( l  .+  a
)  =  u  <->  ( i  .+  a )  =  u ) )
8584cbvrexv 3172 . . . . . . . . . 10  |-  ( E. l  e.  B  ( l  .+  a )  =  u  <->  E. i  e.  B  ( i  .+  a )  =  u )
8682, 85sylib 208 . . . . . . . . 9  |-  ( ( ( ( G  e. SGrp  /\  B  =/=  (/)  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  /\  u  e.  B
)  /\  a  e.  B )  ->  E. i  e.  B  ( i  .+  a )  =  u )
8786adantllr 755 . . . . . . . 8  |-  ( ( ( ( ( G  e. SGrp  /\  B  =/=  (/) 
/\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  /\  w  e.  B
)  /\  u  e.  B )  /\  a  e.  B )  ->  E. i  e.  B  ( i  .+  a )  =  u )
8887adantrr 753 . . . . . . 7  |-  ( ( ( ( ( G  e. SGrp  /\  B  =/=  (/) 
/\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  /\  w  e.  B
)  /\  u  e.  B )  /\  (
a  e.  B  /\  ( u  .+  w )  =  w ) )  ->  E. i  e.  B  ( i  .+  a
)  =  u )
8963, 88jca 554 . . . . . 6  |-  ( ( ( ( ( G  e. SGrp  /\  B  =/=  (/) 
/\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  /\  w  e.  B
)  /\  u  e.  B )  /\  (
a  e.  B  /\  ( u  .+  w )  =  w ) )  ->  ( ( u 
.+  a )  =  a  /\  E. i  e.  B  ( i  .+  a )  =  u ) )
9089expr 643 . . . . 5  |-  ( ( ( ( ( G  e. SGrp  /\  B  =/=  (/) 
/\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  /\  w  e.  B
)  /\  u  e.  B )  /\  a  e.  B )  ->  (
( u  .+  w
)  =  w  -> 
( ( u  .+  a )  =  a  /\  E. i  e.  B  ( i  .+  a )  =  u ) ) )
9190ralrimdva 2969 . . . 4  |-  ( ( ( ( G  e. SGrp  /\  B  =/=  (/)  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  ( l  .+  x
)  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  /\  w  e.  B
)  /\  u  e.  B )  ->  (
( u  .+  w
)  =  w  ->  A. a  e.  B  ( ( u  .+  a )  =  a  /\  E. i  e.  B  ( i  .+  a )  =  u ) ) )
9291reximdva 3017 . . 3  |-  ( ( ( G  e. SGrp  /\  B  =/=  (/)  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  (
l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  /\  w  e.  B )  ->  ( E. u  e.  B  ( u  .+  w )  =  w  ->  E. u  e.  B  A. a  e.  B  ( (
u  .+  a )  =  a  /\  E. i  e.  B  ( i  .+  a )  =  u ) ) )
9328, 92mpd 15 . 2  |-  ( ( ( G  e. SGrp  /\  B  =/=  (/)  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  (
l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  /\  w  e.  B )  ->  E. u  e.  B  A. a  e.  B  ( (
u  .+  a )  =  a  /\  E. i  e.  B  ( i  .+  a )  =  u ) )
943, 93exlimddv 1863 1  |-  ( ( G  e. SGrp  /\  B  =/=  (/)  /\  A. x  e.  B  A. y  e.  B  ( E. l  e.  B  (
l  .+  x )  =  y  /\  E. r  e.  B  ( x  .+  r )  =  y ) )  ->  E. u  e.  B  A. a  e.  B  ( (
u  .+  a )  =  a  /\  E. i  e.  B  ( i  .+  a )  =  u ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   (/)c0 3915   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941  SGrpcsgrp 17283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-sgrp 17284
This theorem is referenced by:  dfgrp3  17514
  Copyright terms: Public domain W3C validator