| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfgrp3 | Structured version Visualization version Unicode version | ||
| Description: Alternate definition of a
group as semigroup (with at least one element)
which is also a quasigroup, i.e. a magma in which solutions |
| Ref | Expression |
|---|---|
| dfgrp3.b |
|
| dfgrp3.p |
|
| Ref | Expression |
|---|---|
| dfgrp3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsgrp 17446 |
. . 3
| |
| 2 | dfgrp3.b |
. . . 4
| |
| 3 | 2 | grpbn0 17451 |
. . 3
|
| 4 | simpl 473 |
. . . . . . 7
| |
| 5 | simpr 477 |
. . . . . . . 8
| |
| 6 | 5 | adantl 482 |
. . . . . . 7
|
| 7 | simpl 473 |
. . . . . . . 8
| |
| 8 | 7 | adantl 482 |
. . . . . . 7
|
| 9 | eqid 2622 |
. . . . . . . 8
| |
| 10 | 2, 9 | grpsubcl 17495 |
. . . . . . 7
|
| 11 | 4, 6, 8, 10 | syl3anc 1326 |
. . . . . 6
|
| 12 | oveq1 6657 |
. . . . . . . 8
| |
| 13 | 12 | eqeq1d 2624 |
. . . . . . 7
|
| 14 | 13 | adantl 482 |
. . . . . 6
|
| 15 | dfgrp3.p |
. . . . . . . 8
| |
| 16 | 2, 15, 9 | grpnpcan 17507 |
. . . . . . 7
|
| 17 | 4, 6, 8, 16 | syl3anc 1326 |
. . . . . 6
|
| 18 | 11, 14, 17 | rspcedvd 3317 |
. . . . 5
|
| 19 | eqid 2622 |
. . . . . . . . 9
| |
| 20 | 2, 19 | grpinvcl 17467 |
. . . . . . . 8
|
| 21 | 20 | adantrr 753 |
. . . . . . 7
|
| 22 | 2, 15 | grpcl 17430 |
. . . . . . 7
|
| 23 | 4, 21, 6, 22 | syl3anc 1326 |
. . . . . 6
|
| 24 | oveq2 6658 |
. . . . . . . 8
| |
| 25 | 24 | eqeq1d 2624 |
. . . . . . 7
|
| 26 | 25 | adantl 482 |
. . . . . 6
|
| 27 | eqid 2622 |
. . . . . . . . . 10
| |
| 28 | 2, 15, 27, 19 | grprinv 17469 |
. . . . . . . . 9
|
| 29 | 28 | adantrr 753 |
. . . . . . . 8
|
| 30 | 29 | oveq1d 6665 |
. . . . . . 7
|
| 31 | 2, 15 | grpass 17431 |
. . . . . . . 8
|
| 32 | 4, 8, 21, 6, 31 | syl13anc 1328 |
. . . . . . 7
|
| 33 | grpmnd 17429 |
. . . . . . . 8
| |
| 34 | 2, 15, 27 | mndlid 17311 |
. . . . . . . 8
|
| 35 | 33, 5, 34 | syl2an 494 |
. . . . . . 7
|
| 36 | 30, 32, 35 | 3eqtr3d 2664 |
. . . . . 6
|
| 37 | 23, 26, 36 | rspcedvd 3317 |
. . . . 5
|
| 38 | 18, 37 | jca 554 |
. . . 4
|
| 39 | 38 | ralrimivva 2971 |
. . 3
|
| 40 | 1, 3, 39 | 3jca 1242 |
. 2
|
| 41 | simp1 1061 |
. . 3
| |
| 42 | 2, 15 | dfgrp3lem 17513 |
. . 3
|
| 43 | 2, 15 | dfgrp2 17447 |
. . 3
|
| 44 | 41, 42, 43 | sylanbrc 698 |
. 2
|
| 45 | 40, 44 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-0g 16102 df-mgm 17242 df-sgrp 17284 df-mnd 17295 df-grp 17425 df-minusg 17426 df-sbg 17427 |
| This theorem is referenced by: dfgrp3e 17515 |
| Copyright terms: Public domain | W3C validator |