Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfimafnf Structured version   Visualization version   Unicode version

Theorem dfimafnf 29436
Description: Alternate definition of the image of a function. (Contributed by Raph Levien, 20-Nov-2006.) (Revised by Thierry Arnoux, 24-Apr-2017.)
Hypotheses
Ref Expression
dfimafnf.1  |-  F/_ x A
dfimafnf.2  |-  F/_ x F
Assertion
Ref Expression
dfimafnf  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( F " A
)  =  { y  |  E. x  e.  A  y  =  ( F `  x ) } )
Distinct variable groups:    x, y    y, A    y, F
Allowed substitution hints:    A( x)    F( x)

Proof of Theorem dfimafnf
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ssel 3597 . . . . . . 7  |-  ( A 
C_  dom  F  ->  ( z  e.  A  -> 
z  e.  dom  F
) )
2 eqcom 2629 . . . . . . . . 9  |-  ( ( F `  z )  =  y  <->  y  =  ( F `  z ) )
3 funbrfvb 6238 . . . . . . . . 9  |-  ( ( Fun  F  /\  z  e.  dom  F )  -> 
( ( F `  z )  =  y  <-> 
z F y ) )
42, 3syl5bbr 274 . . . . . . . 8  |-  ( ( Fun  F  /\  z  e.  dom  F )  -> 
( y  =  ( F `  z )  <-> 
z F y ) )
54ex 450 . . . . . . 7  |-  ( Fun 
F  ->  ( z  e.  dom  F  ->  (
y  =  ( F `
 z )  <->  z F
y ) ) )
61, 5syl9r 78 . . . . . 6  |-  ( Fun 
F  ->  ( A  C_ 
dom  F  ->  ( z  e.  A  ->  (
y  =  ( F `
 z )  <->  z F
y ) ) ) )
76imp31 448 . . . . 5  |-  ( ( ( Fun  F  /\  A  C_  dom  F )  /\  z  e.  A
)  ->  ( y  =  ( F `  z )  <->  z F
y ) )
87rexbidva 3049 . . . 4  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( E. z  e.  A  y  =  ( F `  z )  <->  E. z  e.  A  z F y ) )
98abbidv 2741 . . 3  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  ->  { y  |  E. z  e.  A  y  =  ( F `  z ) }  =  { y  |  E. z  e.  A  z F y } )
10 dfima2 5468 . . 3  |-  ( F
" A )  =  { y  |  E. z  e.  A  z F y }
119, 10syl6reqr 2675 . 2  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( F " A
)  =  { y  |  E. z  e.  A  y  =  ( F `  z ) } )
12 nfcv 2764 . . . 4  |-  F/_ z A
13 dfimafnf.1 . . . 4  |-  F/_ x A
14 dfimafnf.2 . . . . . 6  |-  F/_ x F
15 nfcv 2764 . . . . . 6  |-  F/_ x
z
1614, 15nffv 6198 . . . . 5  |-  F/_ x
( F `  z
)
1716nfeq2 2780 . . . 4  |-  F/ x  y  =  ( F `  z )
18 nfv 1843 . . . 4  |-  F/ z  y  =  ( F `
 x )
19 fveq2 6191 . . . . 5  |-  ( z  =  x  ->  ( F `  z )  =  ( F `  x ) )
2019eqeq2d 2632 . . . 4  |-  ( z  =  x  ->  (
y  =  ( F `
 z )  <->  y  =  ( F `  x ) ) )
2112, 13, 17, 18, 20cbvrexf 3166 . . 3  |-  ( E. z  e.  A  y  =  ( F `  z )  <->  E. x  e.  A  y  =  ( F `  x ) )
2221abbii 2739 . 2  |-  { y  |  E. z  e.  A  y  =  ( F `  z ) }  =  { y  |  E. x  e.  A  y  =  ( F `  x ) }
2311, 22syl6eq 2672 1  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( F " A
)  =  { y  |  E. x  e.  A  y  =  ( F `  x ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   F/_wnfc 2751   E.wrex 2913    C_ wss 3574   class class class wbr 4653   dom cdm 5114   "cima 5117   Fun wfun 5882   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896
This theorem is referenced by:  funimass4f  29437
  Copyright terms: Public domain W3C validator