| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfint3 | Structured version Visualization version Unicode version | ||
| Description: Quantifier-free definition of class intersection. (Contributed by Scott Fenton, 13-Apr-2018.) |
| Ref | Expression |
|---|---|
| dfint3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfint2 4477 |
. 2
| |
| 2 | ralnex 2992 |
. . . 4
| |
| 3 | vex 3203 |
. . . . . . . . 9
| |
| 4 | vex 3203 |
. . . . . . . . 9
| |
| 5 | 3, 4 | brcnv 5305 |
. . . . . . . 8
|
| 6 | brv 4941 |
. . . . . . . . 9
| |
| 7 | brdif 4705 |
. . . . . . . . 9
| |
| 8 | 6, 7 | mpbiran 953 |
. . . . . . . 8
|
| 9 | 5, 8 | bitr2i 265 |
. . . . . . 7
|
| 10 | 9 | con1bii 346 |
. . . . . 6
|
| 11 | epel 5032 |
. . . . . 6
| |
| 12 | 10, 11 | bitr2i 265 |
. . . . 5
|
| 13 | 12 | ralbii 2980 |
. . . 4
|
| 14 | eldif 3584 |
. . . . . 6
| |
| 15 | 4, 14 | mpbiran 953 |
. . . . 5
|
| 16 | 4 | elima 5471 |
. . . . 5
|
| 17 | 15, 16 | xchbinx 324 |
. . . 4
|
| 18 | 2, 13, 17 | 3bitr4ri 293 |
. . 3
|
| 19 | 18 | abbi2i 2738 |
. 2
|
| 20 | 1, 19 | eqtr4i 2647 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-int 4476 df-br 4654 df-opab 4713 df-eprel 5029 df-xp 5120 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |