Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfint3 Structured version   Visualization version   Unicode version

Theorem dfint3 32059
Description: Quantifier-free definition of class intersection. (Contributed by Scott Fenton, 13-Apr-2018.)
Assertion
Ref Expression
dfint3  |-  |^| A  =  ( _V  \ 
( `' ( _V 
\  _E  ) " A ) )

Proof of Theorem dfint3
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfint2 4477 . 2  |-  |^| A  =  { x  |  A. y  e.  A  x  e.  y }
2 ralnex 2992 . . . 4  |-  ( A. y  e.  A  -.  y `' ( _V  \  _E  ) x  <->  -.  E. y  e.  A  y `' ( _V  \  _E  )
x )
3 vex 3203 . . . . . . . . 9  |-  y  e. 
_V
4 vex 3203 . . . . . . . . 9  |-  x  e. 
_V
53, 4brcnv 5305 . . . . . . . 8  |-  ( y `' ( _V  \  _E  ) x  <->  x ( _V  \  _E  ) y )
6 brv 4941 . . . . . . . . 9  |-  x _V y
7 brdif 4705 . . . . . . . . 9  |-  ( x ( _V  \  _E  ) y  <->  ( x _V y  /\  -.  x  _E  y ) )
86, 7mpbiran 953 . . . . . . . 8  |-  ( x ( _V  \  _E  ) y  <->  -.  x  _E  y )
95, 8bitr2i 265 . . . . . . 7  |-  ( -.  x  _E  y  <->  y `' ( _V  \  _E  )
x )
109con1bii 346 . . . . . 6  |-  ( -.  y `' ( _V 
\  _E  ) x  <-> 
x  _E  y )
11 epel 5032 . . . . . 6  |-  ( x  _E  y  <->  x  e.  y )
1210, 11bitr2i 265 . . . . 5  |-  ( x  e.  y  <->  -.  y `' ( _V  \  _E  ) x )
1312ralbii 2980 . . . 4  |-  ( A. y  e.  A  x  e.  y  <->  A. y  e.  A  -.  y `' ( _V 
\  _E  ) x )
14 eldif 3584 . . . . . 6  |-  ( x  e.  ( _V  \ 
( `' ( _V 
\  _E  ) " A ) )  <->  ( x  e.  _V  /\  -.  x  e.  ( `' ( _V 
\  _E  ) " A ) ) )
154, 14mpbiran 953 . . . . 5  |-  ( x  e.  ( _V  \ 
( `' ( _V 
\  _E  ) " A ) )  <->  -.  x  e.  ( `' ( _V 
\  _E  ) " A ) )
164elima 5471 . . . . 5  |-  ( x  e.  ( `' ( _V  \  _E  ) " A )  <->  E. y  e.  A  y `' ( _V  \  _E  )
x )
1715, 16xchbinx 324 . . . 4  |-  ( x  e.  ( _V  \ 
( `' ( _V 
\  _E  ) " A ) )  <->  -.  E. y  e.  A  y `' ( _V  \  _E  )
x )
182, 13, 173bitr4ri 293 . . 3  |-  ( x  e.  ( _V  \ 
( `' ( _V 
\  _E  ) " A ) )  <->  A. y  e.  A  x  e.  y )
1918abbi2i 2738 . 2  |-  ( _V 
\  ( `' ( _V  \  _E  ) " A ) )  =  { x  |  A. y  e.  A  x  e.  y }
201, 19eqtr4i 2647 1  |-  |^| A  =  ( _V  \ 
( `' ( _V 
\  _E  ) " A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   _Vcvv 3200    \ cdif 3571   |^|cint 4475   class class class wbr 4653    _E cep 5028   `'ccnv 5113   "cima 5117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-int 4476  df-br 4654  df-opab 4713  df-eprel 5029  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator