MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfiota4 Structured version   Visualization version   Unicode version

Theorem dfiota4 5879
Description: The  iota operation using the  if operator. (Contributed by Scott Fenton, 6-Oct-2017.) (Proof shortened by JJ, 28-Oct-2021.)
Assertion
Ref Expression
dfiota4  |-  ( iota
x ph )  =  if ( E! x ph ,  U. { x  | 
ph } ,  (/) )

Proof of Theorem dfiota4
StepHypRef Expression
1 iotauni 5863 . 2  |-  ( E! x ph  ->  ( iota x ph )  = 
U. { x  | 
ph } )
2 iotanul 5866 . 2  |-  ( -.  E! x ph  ->  ( iota x ph )  =  (/) )
3 ifval 4127 . 2  |-  ( ( iota x ph )  =  if ( E! x ph ,  U. { x  |  ph } ,  (/) ) 
<->  ( ( E! x ph  ->  ( iota x ph )  =  U. { x  |  ph }
)  /\  ( -.  E! x ph  ->  ( iota x ph )  =  (/) ) ) )
41, 2, 3mpbir2an 955 1  |-  ( iota
x ph )  =  if ( E! x ph ,  U. { x  | 
ph } ,  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1483   E!weu 2470   {cab 2608   (/)c0 3915   ifcif 4086   U.cuni 4436   iotacio 5849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-uni 4437  df-iota 5851
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator