| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sniota | Structured version Visualization version Unicode version | ||
| Description: A class abstraction with a unique member can be expressed as a singleton. (Contributed by Mario Carneiro, 23-Dec-2016.) |
| Ref | Expression |
|---|---|
| sniota |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeu1 2480 |
. 2
| |
| 2 | nfab1 2766 |
. 2
| |
| 3 | nfiota1 5853 |
. . 3
| |
| 4 | 3 | nfsn 4242 |
. 2
|
| 5 | iota1 5865 |
. . . 4
| |
| 6 | eqcom 2629 |
. . . 4
| |
| 7 | 5, 6 | syl6bb 276 |
. . 3
|
| 8 | abid 2610 |
. . 3
| |
| 9 | velsn 4193 |
. . 3
| |
| 10 | 7, 8, 9 | 3bitr4g 303 |
. 2
|
| 11 | 1, 2, 4, 10 | eqrd 3622 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-sbc 3436 df-un 3579 df-sn 4178 df-pr 4180 df-uni 4437 df-iota 5851 |
| This theorem is referenced by: snriota 6641 |
| Copyright terms: Public domain | W3C validator |