![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ss2abi | Structured version Visualization version Unicode version |
Description: Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995.) |
Ref | Expression |
---|---|
ss2abi.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ss2abi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss2ab 3670 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ss2abi.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpgbir 1726 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-in 3581 df-ss 3588 |
This theorem is referenced by: abssi 3677 rabssab 3690 pwpwssunieq 4615 intabs 4825 abssexg 4851 imassrn 5477 fvclss 6500 fabexg 7122 f1oabexg 7125 mapex 7863 tc2 8618 hta 8760 infmap2 9040 cflm 9072 cflim2 9085 hsmex3 9256 domtriomlem 9264 axdc3lem2 9273 brdom7disj 9353 brdom6disj 9354 npex 9808 hashf1lem2 13240 issubc 16495 isghm 17660 symgbasfi 17806 tgval 20759 ustfn 22005 ustval 22006 ustn0 22024 birthdaylem1 24678 rgrprc 26487 wksfval 26505 mptctf 29495 measbase 30260 measval 30261 ismeas 30262 isrnmeas 30263 ballotlem2 30550 subfaclefac 31158 dfon2lem2 31689 nosupno 31849 poimirlem4 33413 poimirlem9 33418 poimirlem26 33435 poimirlem27 33436 poimirlem28 33437 poimirlem32 33441 sdclem2 33538 lineset 35024 lautset 35368 pautsetN 35384 tendoset 36047 eldiophb 37320 hbtlem1 37693 hbtlem7 37695 relopabVD 39137 rabexgf 39183 upwlksfval 41716 |
Copyright terms: Public domain | W3C validator |