Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon2lem3 Structured version   Visualization version   Unicode version

Theorem dfon2lem3 31690
Description: Lemma for dfon2 31697. All sets satisfying the new definition are transitive and untangled. (Contributed by Scott Fenton, 25-Feb-2011.)
Assertion
Ref Expression
dfon2lem3  |-  ( A  e.  V  ->  ( A. x ( ( x 
C.  A  /\  Tr  x )  ->  x  e.  A )  ->  ( Tr  A  /\  A. z  e.  A  -.  z  e.  z ) ) )
Distinct variable group:    x, A, z
Allowed substitution hints:    V( x, z)

Proof of Theorem dfon2lem3
Dummy variables  w  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 untelirr 31585 . . . . 5  |-  ( A. z  e.  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  -.  z  e.  z  ->  -.  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  e.  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) } )
2 eluni2 4440 . . . . . 6  |-  ( z  e.  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) } 
<->  E. x  e.  {
w  |  ( w 
C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) } z  e.  x )
3 vex 3203 . . . . . . . . . 10  |-  x  e. 
_V
4 sseq1 3626 . . . . . . . . . . 11  |-  ( w  =  x  ->  (
w  C_  A  <->  x  C_  A
) )
5 treq 4758 . . . . . . . . . . 11  |-  ( w  =  x  ->  ( Tr  w  <->  Tr  x )
)
6 raleq 3138 . . . . . . . . . . 11  |-  ( w  =  x  ->  ( A. t  e.  w  -.  t  e.  t  <->  A. t  e.  x  -.  t  e.  t )
)
74, 5, 63anbi123d 1399 . . . . . . . . . 10  |-  ( w  =  x  ->  (
( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t )  <->  ( x  C_  A  /\  Tr  x  /\  A. t  e.  x  -.  t  e.  t ) ) )
83, 7elab 3350 . . . . . . . . 9  |-  ( x  e.  { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) } 
<->  ( x  C_  A  /\  Tr  x  /\  A. t  e.  x  -.  t  e.  t )
)
9 elequ1 1997 . . . . . . . . . . . . . 14  |-  ( t  =  z  ->  (
t  e.  t  <->  z  e.  t ) )
10 elequ2 2004 . . . . . . . . . . . . . 14  |-  ( t  =  z  ->  (
z  e.  t  <->  z  e.  z ) )
119, 10bitrd 268 . . . . . . . . . . . . 13  |-  ( t  =  z  ->  (
t  e.  t  <->  z  e.  z ) )
1211notbid 308 . . . . . . . . . . . 12  |-  ( t  =  z  ->  ( -.  t  e.  t  <->  -.  z  e.  z ) )
1312cbvralv 3171 . . . . . . . . . . 11  |-  ( A. t  e.  x  -.  t  e.  t  <->  A. z  e.  x  -.  z  e.  z )
1413biimpi 206 . . . . . . . . . 10  |-  ( A. t  e.  x  -.  t  e.  t  ->  A. z  e.  x  -.  z  e.  z )
15143ad2ant3 1084 . . . . . . . . 9  |-  ( ( x  C_  A  /\  Tr  x  /\  A. t  e.  x  -.  t  e.  t )  ->  A. z  e.  x  -.  z  e.  z )
168, 15sylbi 207 . . . . . . . 8  |-  ( x  e.  { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  ->  A. z  e.  x  -.  z  e.  z
)
17 rsp 2929 . . . . . . . 8  |-  ( A. z  e.  x  -.  z  e.  z  ->  ( z  e.  x  ->  -.  z  e.  z
) )
1816, 17syl 17 . . . . . . 7  |-  ( x  e.  { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  ->  ( z  e.  x  ->  -.  z  e.  z ) )
1918rexlimiv 3027 . . . . . 6  |-  ( E. x  e.  { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) } z  e.  x  ->  -.  z  e.  z )
202, 19sylbi 207 . . . . 5  |-  ( z  e.  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  ->  -.  z  e.  z )
211, 20mprg 2926 . . . 4  |-  -.  U. { w  |  (
w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  e.  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }
22 dfon2lem2 31689 . . . . 5  |-  U. {
w  |  ( w 
C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  C_  A
23 dfpss2 3692 . . . . . 6  |-  ( U. { w  |  (
w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  C.  A 
<->  ( U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  C_  A  /\  -.  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  =  A ) )
24 dfon2lem1 31688 . . . . . . 7  |-  Tr  U. { w  |  (
w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }
25 ssexg 4804 . . . . . . . . . 10  |-  ( ( U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  C_  A  /\  A  e.  V )  ->  U. {
w  |  ( w 
C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  e.  _V )
2622, 25mpan 706 . . . . . . . . 9  |-  ( A  e.  V  ->  U. {
w  |  ( w 
C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  e.  _V )
27 psseq1 3694 . . . . . . . . . . . . 13  |-  ( x  =  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  ->  ( x  C.  A 
<-> 
U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  C.  A ) )
28 treq 4758 . . . . . . . . . . . . 13  |-  ( x  =  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  ->  ( Tr  x  <->  Tr 
U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) } ) )
2927, 28anbi12d 747 . . . . . . . . . . . 12  |-  ( x  =  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  ->  ( ( x 
C.  A  /\  Tr  x )  <->  ( U. { w  |  (
w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  C.  A  /\  Tr  U. {
w  |  ( w 
C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) } ) ) )
30 eleq1 2689 . . . . . . . . . . . 12  |-  ( x  =  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  ->  ( x  e.  A  <->  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  e.  A )
)
3129, 30imbi12d 334 . . . . . . . . . . 11  |-  ( x  =  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  ->  ( ( ( x  C.  A  /\  Tr  x )  ->  x  e.  A )  <->  ( ( U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  C.  A  /\  Tr  U. {
w  |  ( w 
C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) } )  ->  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  e.  A )
) )
3231spcgv 3293 . . . . . . . . . 10  |-  ( U. { w  |  (
w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  e.  _V  ->  ( A. x
( ( x  C.  A  /\  Tr  x )  ->  x  e.  A
)  ->  ( ( U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  C.  A  /\  Tr  U. {
w  |  ( w 
C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) } )  ->  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  e.  A )
) )
3332imp 445 . . . . . . . . 9  |-  ( ( U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  e.  _V  /\  A. x ( ( x 
C.  A  /\  Tr  x )  ->  x  e.  A ) )  -> 
( ( U. {
w  |  ( w 
C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  C.  A  /\  Tr  U. {
w  |  ( w 
C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) } )  ->  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  e.  A )
)
3426, 33sylan 488 . . . . . . . 8  |-  ( ( A  e.  V  /\  A. x ( ( x 
C.  A  /\  Tr  x )  ->  x  e.  A ) )  -> 
( ( U. {
w  |  ( w 
C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  C.  A  /\  Tr  U. {
w  |  ( w 
C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) } )  ->  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  e.  A )
)
35 snssi 4339 . . . . . . . . . 10  |-  ( U. { w  |  (
w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  e.  A  ->  { U. {
w  |  ( w 
C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) } }  C_  A )
36 unss 3787 . . . . . . . . . . 11  |-  ( ( U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  C_  A  /\  { U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) } }  C_  A )  <->  ( U. { w  |  (
w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  u.  { U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) } } )  C_  A
)
37 df-suc 5729 . . . . . . . . . . . 12  |-  suc  U. { w  |  (
w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  =  ( U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  u.  { U. {
w  |  ( w 
C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) } }
)
3837sseq1i 3629 . . . . . . . . . . 11  |-  ( suc  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  C_  A 
<->  ( U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  u.  { U. {
w  |  ( w 
C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) } }
)  C_  A )
3936, 38sylbb2 228 . . . . . . . . . 10  |-  ( ( U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  C_  A  /\  { U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) } }  C_  A )  ->  suc  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  C_  A )
4022, 35, 39sylancr 695 . . . . . . . . 9  |-  ( U. { w  |  (
w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  e.  A  ->  suc  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  C_  A )
41 suctr 5808 . . . . . . . . . . . . 13  |-  ( Tr 
U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  ->  Tr  suc  U. {
w  |  ( w 
C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) } )
4224, 41ax-mp 5 . . . . . . . . . . . 12  |-  Tr  suc  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }
43 untuni 31586 . . . . . . . . . . . . . 14  |-  ( A. z  e.  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  -.  z  e.  z  <->  A. x  e.  { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) } A. z  e.  x  -.  z  e.  z
)
4443, 16mprgbir 2927 . . . . . . . . . . . . 13  |-  A. z  e.  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  -.  z  e.  z
45 nfv 1843 . . . . . . . . . . . . . . . . 17  |-  F/ t  w  C_  A
46 nfv 1843 . . . . . . . . . . . . . . . . 17  |-  F/ t Tr  w
47 nfra1 2941 . . . . . . . . . . . . . . . . 17  |-  F/ t A. t  e.  w  -.  t  e.  t
4845, 46, 47nf3an 1831 . . . . . . . . . . . . . . . 16  |-  F/ t ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t )
4948nfab 2769 . . . . . . . . . . . . . . 15  |-  F/_ t { w  |  (
w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }
5049nfuni 4442 . . . . . . . . . . . . . 14  |-  F/_ t U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }
5150untsucf 31587 . . . . . . . . . . . . 13  |-  ( A. z  e.  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  -.  z  e.  z  ->  A. t  e.  suc  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  -.  t  e.  t )
5244, 51ax-mp 5 . . . . . . . . . . . 12  |-  A. t  e.  suc  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  -.  t  e.  t
53 sseq1 3626 . . . . . . . . . . . . . . . 16  |-  ( z  =  suc  U. {
w  |  ( w 
C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  ->  ( z  C_  A  <->  suc  U. {
w  |  ( w 
C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  C_  A ) )
54 treq 4758 . . . . . . . . . . . . . . . 16  |-  ( z  =  suc  U. {
w  |  ( w 
C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  ->  ( Tr  z  <->  Tr  suc  U. { w  |  (
w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) } ) )
55 nfcv 2764 . . . . . . . . . . . . . . . . 17  |-  F/_ t
z
5650nfsuc 5796 . . . . . . . . . . . . . . . . 17  |-  F/_ t  suc  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }
5755, 56raleqf 3134 . . . . . . . . . . . . . . . 16  |-  ( z  =  suc  U. {
w  |  ( w 
C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  ->  ( A. t  e.  z  -.  t  e.  t  <->  A. t  e.  suc  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  -.  t  e.  t )
)
5853, 54, 573anbi123d 1399 . . . . . . . . . . . . . . 15  |-  ( z  =  suc  U. {
w  |  ( w 
C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  ->  ( ( z  C_  A  /\  Tr  z  /\  A. t  e.  z  -.  t  e.  t )  <->  ( suc  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  C_  A  /\  Tr  suc  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  /\  A. t  e. 
suc  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  -.  t  e.  t ) ) )
59 sseq1 3626 . . . . . . . . . . . . . . . . 17  |-  ( w  =  z  ->  (
w  C_  A  <->  z  C_  A ) )
60 treq 4758 . . . . . . . . . . . . . . . . 17  |-  ( w  =  z  ->  ( Tr  w  <->  Tr  z )
)
61 raleq 3138 . . . . . . . . . . . . . . . . 17  |-  ( w  =  z  ->  ( A. t  e.  w  -.  t  e.  t  <->  A. t  e.  z  -.  t  e.  t ) )
6259, 60, 613anbi123d 1399 . . . . . . . . . . . . . . . 16  |-  ( w  =  z  ->  (
( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t )  <->  ( z  C_  A  /\  Tr  z  /\  A. t  e.  z  -.  t  e.  t ) ) )
6362cbvabv 2747 . . . . . . . . . . . . . . 15  |-  { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  =  { z  |  ( z  C_  A  /\  Tr  z  /\  A. t  e.  z  -.  t  e.  t ) }
6458, 63elab2g 3353 . . . . . . . . . . . . . 14  |-  ( suc  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  e.  _V  ->  ( suc  U. { w  |  (
w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  e.  { w  |  ( w 
C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  <->  ( suc  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  C_  A  /\  Tr  suc  U. { w  |  (
w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  /\  A. t  e.  suc  U. { w  |  (
w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  -.  t  e.  t )
) )
6564biimprd 238 . . . . . . . . . . . . 13  |-  ( suc  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  e.  _V  ->  ( ( suc  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  C_  A  /\  Tr  suc  U. { w  |  (
w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  /\  A. t  e.  suc  U. { w  |  (
w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  -.  t  e.  t )  ->  suc  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  e.  { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) } ) )
66 sucexg 7010 . . . . . . . . . . . . 13  |-  ( U. { w  |  (
w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  e.  A  ->  suc  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  e.  _V )
6765, 66syl11 33 . . . . . . . . . . . 12  |-  ( ( suc  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  C_  A  /\  Tr  suc  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  /\  A. t  e. 
suc  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  -.  t  e.  t )  ->  ( U. { w  |  (
w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  e.  A  ->  suc  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  e.  { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) } ) )
6842, 52, 67mp3an23 1416 . . . . . . . . . . 11  |-  ( suc  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  C_  A  ->  ( U. {
w  |  ( w 
C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  e.  A  ->  suc  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  e.  { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) } ) )
6968com12 32 . . . . . . . . . 10  |-  ( U. { w  |  (
w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  e.  A  ->  ( suc  U. { w  |  (
w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  C_  A  ->  suc  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  e.  { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) } ) )
70 elssuni 4467 . . . . . . . . . . 11  |-  ( suc  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  e.  { w  |  ( w 
C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  ->  suc  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  C_  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) } )
71 sucssel 5819 . . . . . . . . . . 11  |-  ( U. { w  |  (
w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  e.  A  ->  ( suc  U. { w  |  (
w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  C_  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  ->  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  e.  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) } ) )
7270, 71syl5 34 . . . . . . . . . 10  |-  ( U. { w  |  (
w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  e.  A  ->  ( suc  U. { w  |  (
w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  e.  { w  |  ( w 
C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  ->  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  e.  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) } ) )
7369, 72syld 47 . . . . . . . . 9  |-  ( U. { w  |  (
w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  e.  A  ->  ( suc  U. { w  |  (
w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  C_  A  ->  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  e.  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) } ) )
7440, 73mpd 15 . . . . . . . 8  |-  ( U. { w  |  (
w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  e.  A  ->  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  e.  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) } )
7534, 74syl6 35 . . . . . . 7  |-  ( ( A  e.  V  /\  A. x ( ( x 
C.  A  /\  Tr  x )  ->  x  e.  A ) )  -> 
( ( U. {
w  |  ( w 
C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  C.  A  /\  Tr  U. {
w  |  ( w 
C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) } )  ->  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  e.  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) } ) )
7624, 75mpan2i 713 . . . . . 6  |-  ( ( A  e.  V  /\  A. x ( ( x 
C.  A  /\  Tr  x )  ->  x  e.  A ) )  -> 
( U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  C.  A  ->  U. {
w  |  ( w 
C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  e.  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) } ) )
7723, 76syl5bir 233 . . . . 5  |-  ( ( A  e.  V  /\  A. x ( ( x 
C.  A  /\  Tr  x )  ->  x  e.  A ) )  -> 
( ( U. {
w  |  ( w 
C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  C_  A  /\  -.  U. {
w  |  ( w 
C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  =  A )  ->  U. {
w  |  ( w 
C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  e.  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) } ) )
7822, 77mpani 712 . . . 4  |-  ( ( A  e.  V  /\  A. x ( ( x 
C.  A  /\  Tr  x )  ->  x  e.  A ) )  -> 
( -.  U. {
w  |  ( w 
C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  =  A  ->  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  e.  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) } ) )
7921, 78mt3i 141 . . 3  |-  ( ( A  e.  V  /\  A. x ( ( x 
C.  A  /\  Tr  x )  ->  x  e.  A ) )  ->  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  =  A )
8024, 44pm3.2i 471 . . . 4  |-  ( Tr 
U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  /\  A. z  e. 
U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  -.  z  e.  z )
81 treq 4758 . . . . 5  |-  ( U. { w  |  (
w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  =  A  ->  ( Tr  U. { w  |  (
w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  <->  Tr  A
) )
82 raleq 3138 . . . . 5  |-  ( U. { w  |  (
w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  =  A  ->  ( A. z  e.  U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  -.  z  e.  z  <->  A. z  e.  A  -.  z  e.  z
) )
8381, 82anbi12d 747 . . . 4  |-  ( U. { w  |  (
w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  =  A  ->  ( ( Tr 
U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  /\  A. z  e. 
U. { w  |  ( w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  -.  z  e.  z )  <->  ( Tr  A  /\  A. z  e.  A  -.  z  e.  z
) ) )
8480, 83mpbii 223 . . 3  |-  ( U. { w  |  (
w  C_  A  /\  Tr  w  /\  A. t  e.  w  -.  t  e.  t ) }  =  A  ->  ( Tr  A  /\  A. z  e.  A  -.  z  e.  z
) )
8579, 84syl 17 . 2  |-  ( ( A  e.  V  /\  A. x ( ( x 
C.  A  /\  Tr  x )  ->  x  e.  A ) )  -> 
( Tr  A  /\  A. z  e.  A  -.  z  e.  z )
)
8685ex 450 1  |-  ( A  e.  V  ->  ( A. x ( ( x 
C.  A  /\  Tr  x )  ->  x  e.  A )  ->  ( Tr  A  /\  A. z  e.  A  -.  z  e.  z ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   _Vcvv 3200    u. cun 3572    C_ wss 3574    C. wpss 3575   {csn 4177   U.cuni 4436   Tr wtr 4752   suc csuc 5725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-pw 4160  df-sn 4178  df-pr 4180  df-uni 4437  df-iun 4522  df-tr 4753  df-suc 5729
This theorem is referenced by:  dfon2lem4  31691  dfon2lem5  31692  dfon2lem7  31694  dfon2lem8  31695  dfon2lem9  31696  dfon2  31697
  Copyright terms: Public domain W3C validator