Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diaelrnN Structured version   Visualization version   Unicode version

Theorem diaelrnN 36334
Description: Any value of the partial isomorphism A is a set of translations i.e. a set of vectors. (Contributed by NM, 26-Nov-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
diaelrn.h  |-  H  =  ( LHyp `  K
)
diaelrn.t  |-  T  =  ( ( LTrn `  K
) `  W )
diaelrn.i  |-  I  =  ( ( DIsoA `  K
) `  W )
Assertion
Ref Expression
diaelrnN  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  S  e.  ran  I )  ->  S  C_  T )

Proof of Theorem diaelrnN
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
2 eqid 2622 . . . . 5  |-  ( le
`  K )  =  ( le `  K
)
3 diaelrn.h . . . . 5  |-  H  =  ( LHyp `  K
)
4 diaelrn.i . . . . 5  |-  I  =  ( ( DIsoA `  K
) `  W )
51, 2, 3, 4diafn 36323 . . . 4  |-  ( ( K  e.  V  /\  W  e.  H )  ->  I  Fn  { y  e.  ( Base `  K
)  |  y ( le `  K ) W } )
6 fvelrnb 6243 . . . 4  |-  ( I  Fn  { y  e.  ( Base `  K
)  |  y ( le `  K ) W }  ->  ( S  e.  ran  I  <->  E. x  e.  { y  e.  (
Base `  K )  |  y ( le
`  K ) W }  ( I `  x )  =  S ) )
75, 6syl 17 . . 3  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( S  e.  ran  I 
<->  E. x  e.  {
y  e.  ( Base `  K )  |  y ( le `  K
) W }  (
I `  x )  =  S ) )
8 breq1 4656 . . . . . 6  |-  ( y  =  x  ->  (
y ( le `  K ) W  <->  x ( le `  K ) W ) )
98elrab 3363 . . . . 5  |-  ( x  e.  { y  e.  ( Base `  K
)  |  y ( le `  K ) W }  <->  ( x  e.  ( Base `  K
)  /\  x ( le `  K ) W ) )
10 diaelrn.t . . . . . . . 8  |-  T  =  ( ( LTrn `  K
) `  W )
111, 2, 3, 10, 4diass 36331 . . . . . . 7  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  ( x  e.  ( Base `  K
)  /\  x ( le `  K ) W ) )  ->  (
I `  x )  C_  T )
1211ex 450 . . . . . 6  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( ( x  e.  ( Base `  K
)  /\  x ( le `  K ) W )  ->  ( I `  x )  C_  T
) )
13 sseq1 3626 . . . . . . 7  |-  ( ( I `  x )  =  S  ->  (
( I `  x
)  C_  T  <->  S  C_  T
) )
1413biimpcd 239 . . . . . 6  |-  ( ( I `  x ) 
C_  T  ->  (
( I `  x
)  =  S  ->  S  C_  T ) )
1512, 14syl6 35 . . . . 5  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( ( x  e.  ( Base `  K
)  /\  x ( le `  K ) W )  ->  ( (
I `  x )  =  S  ->  S  C_  T ) ) )
169, 15syl5bi 232 . . . 4  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( x  e.  {
y  e.  ( Base `  K )  |  y ( le `  K
) W }  ->  ( ( I `  x
)  =  S  ->  S  C_  T ) ) )
1716rexlimdv 3030 . . 3  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( E. x  e. 
{ y  e.  (
Base `  K )  |  y ( le
`  K ) W }  ( I `  x )  =  S  ->  S  C_  T
) )
187, 17sylbid 230 . 2  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( S  e.  ran  I  ->  S  C_  T
) )
1918imp 445 1  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  S  e.  ran  I )  ->  S  C_  T )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   E.wrex 2913   {crab 2916    C_ wss 3574   class class class wbr 4653   ran crn 5115    Fn wfn 5883   ` cfv 5888   Basecbs 15857   lecple 15948   LHypclh 35270   LTrncltrn 35387   DIsoAcdia 36317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-disoa 36318
This theorem is referenced by:  dvadiaN  36417  djaclN  36425  djajN  36426
  Copyright terms: Public domain W3C validator