Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diafn Structured version   Visualization version   Unicode version

Theorem diafn 36323
Description: Functionality and domain of the partial isomorphism A. (Contributed by NM, 26-Nov-2013.)
Hypotheses
Ref Expression
diafn.b  |-  B  =  ( Base `  K
)
diafn.l  |-  .<_  =  ( le `  K )
diafn.h  |-  H  =  ( LHyp `  K
)
diafn.i  |-  I  =  ( ( DIsoA `  K
) `  W )
Assertion
Ref Expression
diafn  |-  ( ( K  e.  V  /\  W  e.  H )  ->  I  Fn  { x  e.  B  |  x  .<_  W } )
Distinct variable groups:    x,  .<_    x, B    x, K    x, W
Allowed substitution hints:    H( x)    I( x)    V( x)

Proof of Theorem diafn
Dummy variables  y 
f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6201 . . . 4  |-  ( (
LTrn `  K ) `  W )  e.  _V
21rabex 4813 . . 3  |-  { f  e.  ( ( LTrn `  K ) `  W
)  |  ( ( ( trL `  K
) `  W ) `  f )  .<_  y }  e.  _V
3 eqid 2622 . . 3  |-  ( y  e.  { x  e.  B  |  x  .<_  W }  |->  { f  e.  ( ( LTrn `  K
) `  W )  |  ( ( ( trL `  K ) `
 W ) `  f )  .<_  y } )  =  ( y  e.  { x  e.  B  |  x  .<_  W }  |->  { f  e.  ( ( LTrn `  K
) `  W )  |  ( ( ( trL `  K ) `
 W ) `  f )  .<_  y } )
42, 3fnmpti 6022 . 2  |-  ( y  e.  { x  e.  B  |  x  .<_  W }  |->  { f  e.  ( ( LTrn `  K
) `  W )  |  ( ( ( trL `  K ) `
 W ) `  f )  .<_  y } )  Fn  { x  e.  B  |  x  .<_  W }
5 diafn.b . . . 4  |-  B  =  ( Base `  K
)
6 diafn.l . . . 4  |-  .<_  =  ( le `  K )
7 diafn.h . . . 4  |-  H  =  ( LHyp `  K
)
8 eqid 2622 . . . 4  |-  ( (
LTrn `  K ) `  W )  =  ( ( LTrn `  K
) `  W )
9 eqid 2622 . . . 4  |-  ( ( trL `  K ) `
 W )  =  ( ( trL `  K
) `  W )
10 diafn.i . . . 4  |-  I  =  ( ( DIsoA `  K
) `  W )
115, 6, 7, 8, 9, 10diafval 36320 . . 3  |-  ( ( K  e.  V  /\  W  e.  H )  ->  I  =  ( y  e.  { x  e.  B  |  x  .<_  W }  |->  { f  e.  ( ( LTrn `  K
) `  W )  |  ( ( ( trL `  K ) `
 W ) `  f )  .<_  y } ) )
1211fneq1d 5981 . 2  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( I  Fn  {
x  e.  B  |  x  .<_  W }  <->  ( y  e.  { x  e.  B  |  x  .<_  W }  |->  { f  e.  ( ( LTrn `  K
) `  W )  |  ( ( ( trL `  K ) `
 W ) `  f )  .<_  y } )  Fn  { x  e.  B  |  x  .<_  W } ) )
134, 12mpbiri 248 1  |-  ( ( K  e.  V  /\  W  e.  H )  ->  I  Fn  { x  e.  B  |  x  .<_  W } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {crab 2916   class class class wbr 4653    |-> cmpt 4729    Fn wfn 5883   ` cfv 5888   Basecbs 15857   lecple 15948   LHypclh 35270   LTrncltrn 35387   trLctrl 35445   DIsoAcdia 36317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-disoa 36318
This theorem is referenced by:  diadm  36324  diaelrnN  36334  diaf11N  36338
  Copyright terms: Public domain W3C validator