MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  diagval Structured version   Visualization version   Unicode version

Theorem diagval 16880
Description: Define the diagonal functor, which is the functor  C --> ( D  Func  C ) whose object part is  x  e.  C  |->  ( y  e.  D  |->  x ). We can define this equationally as the currying of the first projection functor, and by expressing it this way we get a quick proof of functoriality. (Contributed by Mario Carneiro, 6-Jan-2017.) (Revised by Mario Carneiro, 15-Jan-2017.)
Hypotheses
Ref Expression
diagval.l  |-  L  =  ( CΔfunc D )
diagval.c  |-  ( ph  ->  C  e.  Cat )
diagval.d  |-  ( ph  ->  D  e.  Cat )
Assertion
Ref Expression
diagval  |-  ( ph  ->  L  =  ( <. C ,  D >. curryF  ( C  1stF  D ) ) )

Proof of Theorem diagval
Dummy variables  c 
d are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 diagval.l . 2  |-  L  =  ( CΔfunc D )
2 df-diag 16856 . . . 4  |- Δfunc  =  ( c  e.  Cat ,  d  e. 
Cat  |->  ( <. c ,  d >. curryF  ( c  1stF  d )
) )
32a1i 11 . . 3  |-  ( ph  -> Δfunc  =  ( c  e.  Cat ,  d  e.  Cat  |->  (
<. c ,  d >. curryF  ( c  1stF  d ) ) ) )
4 simprl 794 . . . . 5  |-  ( (
ph  /\  ( c  =  C  /\  d  =  D ) )  -> 
c  =  C )
5 simprr 796 . . . . 5  |-  ( (
ph  /\  ( c  =  C  /\  d  =  D ) )  -> 
d  =  D )
64, 5opeq12d 4410 . . . 4  |-  ( (
ph  /\  ( c  =  C  /\  d  =  D ) )  ->  <. c ,  d >.  =  <. C ,  D >. )
74, 5oveq12d 6668 . . . 4  |-  ( (
ph  /\  ( c  =  C  /\  d  =  D ) )  -> 
( c  1stF  d )  =  ( C  1stF  D ) )
86, 7oveq12d 6668 . . 3  |-  ( (
ph  /\  ( c  =  C  /\  d  =  D ) )  -> 
( <. c ,  d
>. curryF  ( c  1stF  d ) )  =  ( <. C ,  D >. curryF  ( C  1stF  D ) ) )
9 diagval.c . . 3  |-  ( ph  ->  C  e.  Cat )
10 diagval.d . . 3  |-  ( ph  ->  D  e.  Cat )
11 ovexd 6680 . . 3  |-  ( ph  ->  ( <. C ,  D >. curryF  ( C  1stF  D ) )  e. 
_V )
123, 8, 9, 10, 11ovmpt2d 6788 . 2  |-  ( ph  ->  ( CΔfunc D )  =  (
<. C ,  D >. curryF  ( C  1stF  D ) ) )
131, 12syl5eq 2668 1  |-  ( ph  ->  L  =  ( <. C ,  D >. curryF  ( C  1stF  D ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   _Vcvv 3200   <.cop 4183  (class class class)co 6650    |-> cmpt2 6652   Catccat 16325    1stF c1stf 16809   curryF ccurf 16850  Δfunccdiag 16852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-diag 16856
This theorem is referenced by:  diagcl  16881  diag11  16883  diag12  16884  diag2  16885
  Copyright terms: Public domain W3C validator