MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uncfcurf Structured version   Visualization version   Unicode version

Theorem uncfcurf 16879
Description: Cancellation of uncurry with curry. (Contributed by Mario Carneiro, 13-Jan-2017.)
Hypotheses
Ref Expression
uncfcurf.g  |-  G  =  ( <. C ,  D >. curryF  F
)
uncfcurf.c  |-  ( ph  ->  C  e.  Cat )
uncfcurf.d  |-  ( ph  ->  D  e.  Cat )
uncfcurf.f  |-  ( ph  ->  F  e.  ( ( C  X.c  D )  Func  E
) )
Assertion
Ref Expression
uncfcurf  |-  ( ph  ->  ( <" C D E "> uncurryF  G )  =  F )

Proof of Theorem uncfcurf
Dummy variables  f 
g  u  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . . . 7  |-  ( <" C D E "> uncurryF  G )  =  (
<" C D E "> uncurryF  G )
2 uncfcurf.d . . . . . . . 8  |-  ( ph  ->  D  e.  Cat )
32adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  D )
) )  ->  D  e.  Cat )
4 uncfcurf.f . . . . . . . . . 10  |-  ( ph  ->  F  e.  ( ( C  X.c  D )  Func  E
) )
5 funcrcl 16523 . . . . . . . . . 10  |-  ( F  e.  ( ( C  X.c  D )  Func  E
)  ->  ( ( C  X.c  D )  e.  Cat  /\  E  e.  Cat )
)
64, 5syl 17 . . . . . . . . 9  |-  ( ph  ->  ( ( C  X.c  D
)  e.  Cat  /\  E  e.  Cat )
)
76simprd 479 . . . . . . . 8  |-  ( ph  ->  E  e.  Cat )
87adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  D )
) )  ->  E  e.  Cat )
9 uncfcurf.g . . . . . . . . 9  |-  G  =  ( <. C ,  D >. curryF  F
)
10 eqid 2622 . . . . . . . . 9  |-  ( D FuncCat  E )  =  ( D FuncCat  E )
11 uncfcurf.c . . . . . . . . 9  |-  ( ph  ->  C  e.  Cat )
129, 10, 11, 2, 4curfcl 16872 . . . . . . . 8  |-  ( ph  ->  G  e.  ( C 
Func  ( D FuncCat  E
) ) )
1312adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  D )
) )  ->  G  e.  ( C  Func  ( D FuncCat  E ) ) )
14 eqid 2622 . . . . . . 7  |-  ( Base `  C )  =  (
Base `  C )
15 eqid 2622 . . . . . . 7  |-  ( Base `  D )  =  (
Base `  D )
16 simprl 794 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  D )
) )  ->  x  e.  ( Base `  C
) )
17 simprr 796 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  D )
) )  ->  y  e.  ( Base `  D
) )
181, 3, 8, 13, 14, 15, 16, 17uncf1 16876 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  D )
) )  ->  (
x ( 1st `  ( <" C D E "> uncurryF  G ) ) y )  =  ( ( 1st `  ( ( 1st `  G ) `
 x ) ) `
 y ) )
1911adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  D )
) )  ->  C  e.  Cat )
204adantr 481 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  D )
) )  ->  F  e.  ( ( C  X.c  D
)  Func  E )
)
21 eqid 2622 . . . . . . 7  |-  ( ( 1st `  G ) `
 x )  =  ( ( 1st `  G
) `  x )
229, 14, 19, 3, 20, 15, 16, 21, 17curf11 16866 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  D )
) )  ->  (
( 1st `  (
( 1st `  G
) `  x )
) `  y )  =  ( x ( 1st `  F ) y ) )
2318, 22eqtrd 2656 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  D )
) )  ->  (
x ( 1st `  ( <" C D E "> uncurryF  G ) ) y )  =  ( x ( 1st `  F
) y ) )
2423ralrimivva 2971 . . . 4  |-  ( ph  ->  A. x  e.  (
Base `  C ) A. y  e.  ( Base `  D ) ( x ( 1st `  ( <" C D E "> uncurryF  G ) ) y )  =  ( x ( 1st `  F
) y ) )
25 eqid 2622 . . . . . . . 8  |-  ( C  X.c  D )  =  ( C  X.c  D )
2625, 14, 15xpcbas 16818 . . . . . . 7  |-  ( (
Base `  C )  X.  ( Base `  D
) )  =  (
Base `  ( C  X.c  D ) )
27 eqid 2622 . . . . . . 7  |-  ( Base `  E )  =  (
Base `  E )
28 relfunc 16522 . . . . . . . 8  |-  Rel  (
( C  X.c  D ) 
Func  E )
291, 2, 7, 12uncfcl 16875 . . . . . . . 8  |-  ( ph  ->  ( <" C D E "> uncurryF  G )  e.  ( ( C  X.c  D ) 
Func  E ) )
30 1st2ndbr 7217 . . . . . . . 8  |-  ( ( Rel  ( ( C  X.c  D )  Func  E
)  /\  ( <" C D E "> uncurryF  G )  e.  ( ( C  X.c  D )  Func  E
) )  ->  ( 1st `  ( <" C D E "> uncurryF  G ) ) ( ( C  X.c  D ) 
Func  E ) ( 2nd `  ( <" C D E "> uncurryF  G ) ) )
3128, 29, 30sylancr 695 . . . . . . 7  |-  ( ph  ->  ( 1st `  ( <" C D E "> uncurryF  G ) ) ( ( C  X.c  D ) 
Func  E ) ( 2nd `  ( <" C D E "> uncurryF  G ) ) )
3226, 27, 31funcf1 16526 . . . . . 6  |-  ( ph  ->  ( 1st `  ( <" C D E "> uncurryF  G ) ) : ( ( Base `  C
)  X.  ( Base `  D ) ) --> (
Base `  E )
)
33 ffn 6045 . . . . . 6  |-  ( ( 1st `  ( <" C D E "> uncurryF  G ) ) : ( ( Base `  C
)  X.  ( Base `  D ) ) --> (
Base `  E )  ->  ( 1st `  ( <" C D E "> uncurryF  G ) )  Fn  ( ( Base `  C
)  X.  ( Base `  D ) ) )
3432, 33syl 17 . . . . 5  |-  ( ph  ->  ( 1st `  ( <" C D E "> uncurryF  G ) )  Fn  ( ( Base `  C
)  X.  ( Base `  D ) ) )
35 1st2ndbr 7217 . . . . . . . 8  |-  ( ( Rel  ( ( C  X.c  D )  Func  E
)  /\  F  e.  ( ( C  X.c  D
)  Func  E )
)  ->  ( 1st `  F ) ( ( C  X.c  D )  Func  E
) ( 2nd `  F
) )
3628, 4, 35sylancr 695 . . . . . . 7  |-  ( ph  ->  ( 1st `  F
) ( ( C  X.c  D )  Func  E
) ( 2nd `  F
) )
3726, 27, 36funcf1 16526 . . . . . 6  |-  ( ph  ->  ( 1st `  F
) : ( (
Base `  C )  X.  ( Base `  D
) ) --> ( Base `  E ) )
38 ffn 6045 . . . . . 6  |-  ( ( 1st `  F ) : ( ( Base `  C )  X.  ( Base `  D ) ) --> ( Base `  E
)  ->  ( 1st `  F )  Fn  (
( Base `  C )  X.  ( Base `  D
) ) )
3937, 38syl 17 . . . . 5  |-  ( ph  ->  ( 1st `  F
)  Fn  ( (
Base `  C )  X.  ( Base `  D
) ) )
40 eqfnov2 6767 . . . . 5  |-  ( ( ( 1st `  ( <" C D E "> uncurryF  G ) )  Fn  ( ( Base `  C
)  X.  ( Base `  D ) )  /\  ( 1st `  F )  Fn  ( ( Base `  C )  X.  ( Base `  D ) ) )  ->  ( ( 1st `  ( <" C D E "> uncurryF  G ) )  =  ( 1st `  F
)  <->  A. x  e.  (
Base `  C ) A. y  e.  ( Base `  D ) ( x ( 1st `  ( <" C D E "> uncurryF  G ) ) y )  =  ( x ( 1st `  F
) y ) ) )
4134, 39, 40syl2anc 693 . . . 4  |-  ( ph  ->  ( ( 1st `  ( <" C D E "> uncurryF  G ) )  =  ( 1st `  F
)  <->  A. x  e.  (
Base `  C ) A. y  e.  ( Base `  D ) ( x ( 1st `  ( <" C D E "> uncurryF  G ) ) y )  =  ( x ( 1st `  F
) y ) ) )
4224, 41mpbird 247 . . 3  |-  ( ph  ->  ( 1st `  ( <" C D E "> uncurryF  G ) )  =  ( 1st `  F
) )
432ad3antrrr 766 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  D  e.  Cat )
447ad3antrrr 766 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  E  e.  Cat )
4512ad3antrrr 766 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  G  e.  ( C  Func  ( D FuncCat  E ) ) )
4616adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) ) )  /\  ( z  e.  (
Base `  C )  /\  w  e.  ( Base `  D ) ) )  ->  x  e.  ( Base `  C )
)
4746adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  x  e.  (
Base `  C )
)
4817adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) ) )  /\  ( z  e.  (
Base `  C )  /\  w  e.  ( Base `  D ) ) )  ->  y  e.  ( Base `  D )
)
4948adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  y  e.  (
Base `  D )
)
50 eqid 2622 . . . . . . . . . . 11  |-  ( Hom  `  C )  =  ( Hom  `  C )
51 eqid 2622 . . . . . . . . . . 11  |-  ( Hom  `  D )  =  ( Hom  `  D )
52 simprl 794 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) ) )  /\  ( z  e.  (
Base `  C )  /\  w  e.  ( Base `  D ) ) )  ->  z  e.  ( Base `  C )
)
5352adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  z  e.  (
Base `  C )
)
54 simprr 796 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) ) )  /\  ( z  e.  (
Base `  C )  /\  w  e.  ( Base `  D ) ) )  ->  w  e.  ( Base `  D )
)
5554adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  w  e.  (
Base `  D )
)
56 simprl 794 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  f  e.  ( x ( Hom  `  C
) z ) )
57 simprr 796 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  g  e.  ( y ( Hom  `  D
) w ) )
581, 43, 44, 45, 14, 15, 47, 49, 50, 51, 53, 55, 56, 57uncf2 16877 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( f (
<. x ,  y >.
( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. ) g )  =  ( ( ( ( x ( 2nd `  G
) z ) `  f ) `  w
) ( <. (
( 1st `  (
( 1st `  G
) `  x )
) `  y ) ,  ( ( 1st `  ( ( 1st `  G
) `  x )
) `  w ) >. (comp `  E )
( ( 1st `  (
( 1st `  G
) `  z )
) `  w )
) ( ( y ( 2nd `  (
( 1st `  G
) `  x )
) w ) `  g ) ) )
5911ad3antrrr 766 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  C  e.  Cat )
604ad3antrrr 766 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  F  e.  ( ( C  X.c  D ) 
Func  E ) )
619, 14, 59, 43, 60, 15, 47, 21, 49curf11 16866 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( ( 1st `  ( ( 1st `  G
) `  x )
) `  y )  =  ( x ( 1st `  F ) y ) )
62 df-ov 6653 . . . . . . . . . . . . . . 15  |-  ( x ( 1st `  F
) y )  =  ( ( 1st `  F
) `  <. x ,  y >. )
6361, 62syl6eq 2672 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( ( 1st `  ( ( 1st `  G
) `  x )
) `  y )  =  ( ( 1st `  F ) `  <. x ,  y >. )
)
649, 14, 59, 43, 60, 15, 47, 21, 55curf11 16866 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( ( 1st `  ( ( 1st `  G
) `  x )
) `  w )  =  ( x ( 1st `  F ) w ) )
65 df-ov 6653 . . . . . . . . . . . . . . 15  |-  ( x ( 1st `  F
) w )  =  ( ( 1st `  F
) `  <. x ,  w >. )
6664, 65syl6eq 2672 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( ( 1st `  ( ( 1st `  G
) `  x )
) `  w )  =  ( ( 1st `  F ) `  <. x ,  w >. )
)
6763, 66opeq12d 4410 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  <. ( ( 1st `  ( ( 1st `  G
) `  x )
) `  y ) ,  ( ( 1st `  ( ( 1st `  G
) `  x )
) `  w ) >.  =  <. ( ( 1st `  F ) `  <. x ,  y >. ) ,  ( ( 1st `  F ) `  <. x ,  w >. ) >. )
68 eqid 2622 . . . . . . . . . . . . . . 15  |-  ( ( 1st `  G ) `
 z )  =  ( ( 1st `  G
) `  z )
699, 14, 59, 43, 60, 15, 53, 68, 55curf11 16866 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( ( 1st `  ( ( 1st `  G
) `  z )
) `  w )  =  ( z ( 1st `  F ) w ) )
70 df-ov 6653 . . . . . . . . . . . . . 14  |-  ( z ( 1st `  F
) w )  =  ( ( 1st `  F
) `  <. z ,  w >. )
7169, 70syl6eq 2672 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( ( 1st `  ( ( 1st `  G
) `  z )
) `  w )  =  ( ( 1st `  F ) `  <. z ,  w >. )
)
7267, 71oveq12d 6668 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( <. (
( 1st `  (
( 1st `  G
) `  x )
) `  y ) ,  ( ( 1st `  ( ( 1st `  G
) `  x )
) `  w ) >. (comp `  E )
( ( 1st `  (
( 1st `  G
) `  z )
) `  w )
)  =  ( <.
( ( 1st `  F
) `  <. x ,  y >. ) ,  ( ( 1st `  F
) `  <. x ,  w >. ) >. (comp `  E ) ( ( 1st `  F ) `
 <. z ,  w >. ) ) )
73 eqid 2622 . . . . . . . . . . . . . 14  |-  ( Id
`  D )  =  ( Id `  D
)
74 eqid 2622 . . . . . . . . . . . . . 14  |-  ( ( x ( 2nd `  G
) z ) `  f )  =  ( ( x ( 2nd `  G ) z ) `
 f )
759, 14, 59, 43, 60, 15, 50, 73, 47, 53, 56, 74, 55curf2val 16870 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( ( ( x ( 2nd `  G
) z ) `  f ) `  w
)  =  ( f ( <. x ,  w >. ( 2nd `  F
) <. z ,  w >. ) ( ( Id
`  D ) `  w ) ) )
76 df-ov 6653 . . . . . . . . . . . . 13  |-  ( f ( <. x ,  w >. ( 2nd `  F
) <. z ,  w >. ) ( ( Id
`  D ) `  w ) )  =  ( ( <. x ,  w >. ( 2nd `  F
) <. z ,  w >. ) `  <. f ,  ( ( Id
`  D ) `  w ) >. )
7775, 76syl6eq 2672 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( ( ( x ( 2nd `  G
) z ) `  f ) `  w
)  =  ( (
<. x ,  w >. ( 2nd `  F )
<. z ,  w >. ) `
 <. f ,  ( ( Id `  D
) `  w ) >. ) )
78 eqid 2622 . . . . . . . . . . . . . 14  |-  ( Id
`  C )  =  ( Id `  C
)
799, 14, 59, 43, 60, 15, 47, 21, 49, 51, 78, 55, 57curf12 16867 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( ( y ( 2nd `  (
( 1st `  G
) `  x )
) w ) `  g )  =  ( ( ( Id `  C ) `  x
) ( <. x ,  y >. ( 2nd `  F ) <.
x ,  w >. ) g ) )
80 df-ov 6653 . . . . . . . . . . . . 13  |-  ( ( ( Id `  C
) `  x )
( <. x ,  y
>. ( 2nd `  F
) <. x ,  w >. ) g )  =  ( ( <. x ,  y >. ( 2nd `  F ) <.
x ,  w >. ) `
 <. ( ( Id
`  C ) `  x ) ,  g
>. )
8179, 80syl6eq 2672 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( ( y ( 2nd `  (
( 1st `  G
) `  x )
) w ) `  g )  =  ( ( <. x ,  y
>. ( 2nd `  F
) <. x ,  w >. ) `  <. (
( Id `  C
) `  x ) ,  g >. )
)
8272, 77, 81oveq123d 6671 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( ( ( ( x ( 2nd `  G ) z ) `
 f ) `  w ) ( <.
( ( 1st `  (
( 1st `  G
) `  x )
) `  y ) ,  ( ( 1st `  ( ( 1st `  G
) `  x )
) `  w ) >. (comp `  E )
( ( 1st `  (
( 1st `  G
) `  z )
) `  w )
) ( ( y ( 2nd `  (
( 1st `  G
) `  x )
) w ) `  g ) )  =  ( ( ( <.
x ,  w >. ( 2nd `  F )
<. z ,  w >. ) `
 <. f ,  ( ( Id `  D
) `  w ) >. ) ( <. (
( 1st `  F
) `  <. x ,  y >. ) ,  ( ( 1st `  F
) `  <. x ,  w >. ) >. (comp `  E ) ( ( 1st `  F ) `
 <. z ,  w >. ) ) ( (
<. x ,  y >.
( 2nd `  F
) <. x ,  w >. ) `  <. (
( Id `  C
) `  x ) ,  g >. )
) )
83 eqid 2622 . . . . . . . . . . . 12  |-  ( Hom  `  ( C  X.c  D ) )  =  ( Hom  `  ( C  X.c  D ) )
84 eqid 2622 . . . . . . . . . . . 12  |-  (comp `  ( C  X.c  D )
)  =  (comp `  ( C  X.c  D )
)
85 eqid 2622 . . . . . . . . . . . 12  |-  (comp `  E )  =  (comp `  E )
8636ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) ) )  /\  ( z  e.  (
Base `  C )  /\  w  e.  ( Base `  D ) ) )  ->  ( 1st `  F ) ( ( C  X.c  D )  Func  E
) ( 2nd `  F
) )
8786adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( 1st `  F
) ( ( C  X.c  D )  Func  E
) ( 2nd `  F
) )
88 opelxpi 5148 . . . . . . . . . . . . . 14  |-  ( ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) )  ->  <. x ,  y >.  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) )
8988ad2antlr 763 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) ) )  /\  ( z  e.  (
Base `  C )  /\  w  e.  ( Base `  D ) ) )  ->  <. x ,  y >.  e.  (
( Base `  C )  X.  ( Base `  D
) ) )
9089adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  <. x ,  y
>.  e.  ( ( Base `  C )  X.  ( Base `  D ) ) )
91 opelxpi 5148 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( Base `  C )  /\  w  e.  ( Base `  D
) )  ->  <. x ,  w >.  e.  (
( Base `  C )  X.  ( Base `  D
) ) )
9247, 55, 91syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  <. x ,  w >.  e.  ( ( Base `  C )  X.  ( Base `  D ) ) )
93 opelxpi 5148 . . . . . . . . . . . . . 14  |-  ( ( z  e.  ( Base `  C )  /\  w  e.  ( Base `  D
) )  ->  <. z ,  w >.  e.  (
( Base `  C )  X.  ( Base `  D
) ) )
9493adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) ) )  /\  ( z  e.  (
Base `  C )  /\  w  e.  ( Base `  D ) ) )  ->  <. z ,  w >.  e.  (
( Base `  C )  X.  ( Base `  D
) ) )
9594adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  <. z ,  w >.  e.  ( ( Base `  C )  X.  ( Base `  D ) ) )
9614, 50, 78, 59, 47catidcl 16343 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( ( Id
`  C ) `  x )  e.  ( x ( Hom  `  C
) x ) )
97 opelxpi 5148 . . . . . . . . . . . . . 14  |-  ( ( ( ( Id `  C ) `  x
)  e.  ( x ( Hom  `  C
) x )  /\  g  e.  ( y
( Hom  `  D ) w ) )  ->  <. ( ( Id `  C ) `  x
) ,  g >.  e.  ( ( x ( Hom  `  C )
x )  X.  (
y ( Hom  `  D
) w ) ) )
9896, 57, 97syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  <. ( ( Id
`  C ) `  x ) ,  g
>.  e.  ( ( x ( Hom  `  C
) x )  X.  ( y ( Hom  `  D ) w ) ) )
9925, 14, 15, 50, 51, 47, 49, 47, 55, 83xpchom2 16826 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( <. x ,  y >. ( Hom  `  ( C  X.c  D
) ) <. x ,  w >. )  =  ( ( x ( Hom  `  C ) x )  X.  ( y ( Hom  `  D )
w ) ) )
10098, 99eleqtrrd 2704 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  <. ( ( Id
`  C ) `  x ) ,  g
>.  e.  ( <. x ,  y >. ( Hom  `  ( C  X.c  D
) ) <. x ,  w >. ) )
10115, 51, 73, 43, 55catidcl 16343 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( ( Id
`  D ) `  w )  e.  ( w ( Hom  `  D
) w ) )
102 opelxpi 5148 . . . . . . . . . . . . . 14  |-  ( ( f  e.  ( x ( Hom  `  C
) z )  /\  ( ( Id `  D ) `  w
)  e.  ( w ( Hom  `  D
) w ) )  ->  <. f ,  ( ( Id `  D
) `  w ) >.  e.  ( ( x ( Hom  `  C
) z )  X.  ( w ( Hom  `  D ) w ) ) )
10356, 101, 102syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  <. f ,  ( ( Id `  D
) `  w ) >.  e.  ( ( x ( Hom  `  C
) z )  X.  ( w ( Hom  `  D ) w ) ) )
10425, 14, 15, 50, 51, 47, 55, 53, 55, 83xpchom2 16826 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( <. x ,  w >. ( Hom  `  ( C  X.c  D ) ) <.
z ,  w >. )  =  ( ( x ( Hom  `  C
) z )  X.  ( w ( Hom  `  D ) w ) ) )
105103, 104eleqtrrd 2704 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  <. f ,  ( ( Id `  D
) `  w ) >.  e.  ( <. x ,  w >. ( Hom  `  ( C  X.c  D ) ) <.
z ,  w >. ) )
10626, 83, 84, 85, 87, 90, 92, 95, 100, 105funcco 16531 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( ( <.
x ,  y >.
( 2nd `  F
) <. z ,  w >. ) `  ( <.
f ,  ( ( Id `  D ) `
 w ) >.
( <. <. x ,  y
>. ,  <. x ,  w >. >. (comp `  ( C  X.c  D ) ) <.
z ,  w >. )
<. ( ( Id `  C ) `  x
) ,  g >.
) )  =  ( ( ( <. x ,  w >. ( 2nd `  F
) <. z ,  w >. ) `  <. f ,  ( ( Id
`  D ) `  w ) >. )
( <. ( ( 1st `  F ) `  <. x ,  y >. ) ,  ( ( 1st `  F ) `  <. x ,  w >. ) >. (comp `  E )
( ( 1st `  F
) `  <. z ,  w >. ) ) ( ( <. x ,  y
>. ( 2nd `  F
) <. x ,  w >. ) `  <. (
( Id `  C
) `  x ) ,  g >. )
) )
107 eqid 2622 . . . . . . . . . . . . . . 15  |-  (comp `  C )  =  (comp `  C )
108 eqid 2622 . . . . . . . . . . . . . . 15  |-  (comp `  D )  =  (comp `  D )
10925, 14, 15, 50, 51, 47, 49, 47, 55, 107, 108, 84, 53, 55, 96, 57, 56, 101xpcco2 16827 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( <. f ,  ( ( Id
`  D ) `  w ) >. ( <. <. x ,  y
>. ,  <. x ,  w >. >. (comp `  ( C  X.c  D ) ) <.
z ,  w >. )
<. ( ( Id `  C ) `  x
) ,  g >.
)  =  <. (
f ( <. x ,  x >. (comp `  C
) z ) ( ( Id `  C
) `  x )
) ,  ( ( ( Id `  D
) `  w )
( <. y ,  w >. (comp `  D )
w ) g )
>. )
110109fveq2d 6195 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( ( <.
x ,  y >.
( 2nd `  F
) <. z ,  w >. ) `  ( <.
f ,  ( ( Id `  D ) `
 w ) >.
( <. <. x ,  y
>. ,  <. x ,  w >. >. (comp `  ( C  X.c  D ) ) <.
z ,  w >. )
<. ( ( Id `  C ) `  x
) ,  g >.
) )  =  ( ( <. x ,  y
>. ( 2nd `  F
) <. z ,  w >. ) `  <. (
f ( <. x ,  x >. (comp `  C
) z ) ( ( Id `  C
) `  x )
) ,  ( ( ( Id `  D
) `  w )
( <. y ,  w >. (comp `  D )
w ) g )
>. ) )
111 df-ov 6653 . . . . . . . . . . . . 13  |-  ( ( f ( <. x ,  x >. (comp `  C
) z ) ( ( Id `  C
) `  x )
) ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. ) ( ( ( Id
`  D ) `  w ) ( <.
y ,  w >. (comp `  D ) w ) g ) )  =  ( ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. ) `
 <. ( f (
<. x ,  x >. (comp `  C ) z ) ( ( Id `  C ) `  x
) ) ,  ( ( ( Id `  D ) `  w
) ( <. y ,  w >. (comp `  D
) w ) g ) >. )
112110, 111syl6eqr 2674 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( ( <.
x ,  y >.
( 2nd `  F
) <. z ,  w >. ) `  ( <.
f ,  ( ( Id `  D ) `
 w ) >.
( <. <. x ,  y
>. ,  <. x ,  w >. >. (comp `  ( C  X.c  D ) ) <.
z ,  w >. )
<. ( ( Id `  C ) `  x
) ,  g >.
) )  =  ( ( f ( <.
x ,  x >. (comp `  C ) z ) ( ( Id `  C ) `  x
) ) ( <.
x ,  y >.
( 2nd `  F
) <. z ,  w >. ) ( ( ( Id `  D ) `
 w ) (
<. y ,  w >. (comp `  D ) w ) g ) ) )
11314, 50, 78, 59, 47, 107, 53, 56catrid 16345 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( f (
<. x ,  x >. (comp `  C ) z ) ( ( Id `  C ) `  x
) )  =  f )
11415, 51, 73, 43, 49, 108, 55, 57catlid 16344 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( ( ( Id `  D ) `
 w ) (
<. y ,  w >. (comp `  D ) w ) g )  =  g )
115113, 114oveq12d 6668 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( ( f ( <. x ,  x >. (comp `  C )
z ) ( ( Id `  C ) `
 x ) ) ( <. x ,  y
>. ( 2nd `  F
) <. z ,  w >. ) ( ( ( Id `  D ) `
 w ) (
<. y ,  w >. (comp `  D ) w ) g ) )  =  ( f ( <.
x ,  y >.
( 2nd `  F
) <. z ,  w >. ) g ) )
116112, 115eqtrd 2656 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( ( <.
x ,  y >.
( 2nd `  F
) <. z ,  w >. ) `  ( <.
f ,  ( ( Id `  D ) `
 w ) >.
( <. <. x ,  y
>. ,  <. x ,  w >. >. (comp `  ( C  X.c  D ) ) <.
z ,  w >. )
<. ( ( Id `  C ) `  x
) ,  g >.
) )  =  ( f ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. ) g ) )
11782, 106, 1163eqtr2d 2662 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( ( ( ( x ( 2nd `  G ) z ) `
 f ) `  w ) ( <.
( ( 1st `  (
( 1st `  G
) `  x )
) `  y ) ,  ( ( 1st `  ( ( 1st `  G
) `  x )
) `  w ) >. (comp `  E )
( ( 1st `  (
( 1st `  G
) `  z )
) `  w )
) ( ( y ( 2nd `  (
( 1st `  G
) `  x )
) w ) `  g ) )  =  ( f ( <.
x ,  y >.
( 2nd `  F
) <. z ,  w >. ) g ) )
11858, 117eqtrd 2656 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  ( Base `  C )  /\  y  e.  ( Base `  D ) ) )  /\  ( z  e.  ( Base `  C
)  /\  w  e.  ( Base `  D )
) )  /\  (
f  e.  ( x ( Hom  `  C
) z )  /\  g  e.  ( y
( Hom  `  D ) w ) ) )  ->  ( f (
<. x ,  y >.
( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. ) g )  =  ( f ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. ) g ) )
119118ralrimivva 2971 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) ) )  /\  ( z  e.  (
Base `  C )  /\  w  e.  ( Base `  D ) ) )  ->  A. f  e.  ( x ( Hom  `  C ) z ) A. g  e.  ( y ( Hom  `  D
) w ) ( f ( <. x ,  y >. ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. ) g )  =  ( f ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. ) g ) )
120 eqid 2622 . . . . . . . . . . . 12  |-  ( Hom  `  E )  =  ( Hom  `  E )
12131ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) ) )  /\  ( z  e.  (
Base `  C )  /\  w  e.  ( Base `  D ) ) )  ->  ( 1st `  ( <" C D E "> uncurryF  G ) ) ( ( C  X.c  D ) 
Func  E ) ( 2nd `  ( <" C D E "> uncurryF  G ) ) )
12226, 83, 120, 121, 89, 94funcf2 16528 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) ) )  /\  ( z  e.  (
Base `  C )  /\  w  e.  ( Base `  D ) ) )  ->  ( <. x ,  y >. ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. ) : ( <. x ,  y >. ( Hom  `  ( C  X.c  D
) ) <. z ,  w >. ) --> ( ( ( 1st `  ( <" C D E "> uncurryF  G ) ) `  <. x ,  y >.
) ( Hom  `  E
) ( ( 1st `  ( <" C D E "> uncurryF  G ) ) `  <. z ,  w >. ) ) )
12325, 14, 15, 50, 51, 46, 48, 52, 54, 83xpchom2 16826 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) ) )  /\  ( z  e.  (
Base `  C )  /\  w  e.  ( Base `  D ) ) )  ->  ( <. x ,  y >. ( Hom  `  ( C  X.c  D
) ) <. z ,  w >. )  =  ( ( x ( Hom  `  C ) z )  X.  ( y ( Hom  `  D )
w ) ) )
124123feq2d 6031 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) ) )  /\  ( z  e.  (
Base `  C )  /\  w  e.  ( Base `  D ) ) )  ->  ( ( <. x ,  y >.
( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. ) : ( <. x ,  y >. ( Hom  `  ( C  X.c  D
) ) <. z ,  w >. ) --> ( ( ( 1st `  ( <" C D E "> uncurryF  G ) ) `  <. x ,  y >.
) ( Hom  `  E
) ( ( 1st `  ( <" C D E "> uncurryF  G ) ) `  <. z ,  w >. ) )  <->  ( <. x ,  y >. ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. ) : ( ( x ( Hom  `  C
) z )  X.  ( y ( Hom  `  D ) w ) ) --> ( ( ( 1st `  ( <" C D E "> uncurryF  G ) ) `  <. x ,  y >.
) ( Hom  `  E
) ( ( 1st `  ( <" C D E "> uncurryF  G ) ) `  <. z ,  w >. ) ) ) )
125122, 124mpbid 222 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) ) )  /\  ( z  e.  (
Base `  C )  /\  w  e.  ( Base `  D ) ) )  ->  ( <. x ,  y >. ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. ) : ( ( x ( Hom  `  C
) z )  X.  ( y ( Hom  `  D ) w ) ) --> ( ( ( 1st `  ( <" C D E "> uncurryF  G ) ) `  <. x ,  y >.
) ( Hom  `  E
) ( ( 1st `  ( <" C D E "> uncurryF  G ) ) `  <. z ,  w >. ) ) )
126 ffn 6045 . . . . . . . . . 10  |-  ( (
<. x ,  y >.
( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. ) : ( ( x ( Hom  `  C
) z )  X.  ( y ( Hom  `  D ) w ) ) --> ( ( ( 1st `  ( <" C D E "> uncurryF  G ) ) `  <. x ,  y >.
) ( Hom  `  E
) ( ( 1st `  ( <" C D E "> uncurryF  G ) ) `  <. z ,  w >. ) )  ->  ( <. x ,  y >. ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. )  Fn  ( ( x ( Hom  `  C
) z )  X.  ( y ( Hom  `  D ) w ) ) )
127125, 126syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) ) )  /\  ( z  e.  (
Base `  C )  /\  w  e.  ( Base `  D ) ) )  ->  ( <. x ,  y >. ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. )  Fn  ( ( x ( Hom  `  C
) z )  X.  ( y ( Hom  `  D ) w ) ) )
12826, 83, 120, 86, 89, 94funcf2 16528 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) ) )  /\  ( z  e.  (
Base `  C )  /\  w  e.  ( Base `  D ) ) )  ->  ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. ) : ( <. x ,  y >. ( Hom  `  ( C  X.c  D
) ) <. z ,  w >. ) --> ( ( ( 1st `  F
) `  <. x ,  y >. ) ( Hom  `  E ) ( ( 1st `  F ) `
 <. z ,  w >. ) ) )
129123feq2d 6031 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) ) )  /\  ( z  e.  (
Base `  C )  /\  w  e.  ( Base `  D ) ) )  ->  ( ( <. x ,  y >.
( 2nd `  F
) <. z ,  w >. ) : ( <.
x ,  y >.
( Hom  `  ( C  X.c  D ) ) <.
z ,  w >. ) --> ( ( ( 1st `  F ) `  <. x ,  y >. )
( Hom  `  E ) ( ( 1st `  F
) `  <. z ,  w >. ) )  <->  ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. ) : ( ( x ( Hom  `  C
) z )  X.  ( y ( Hom  `  D ) w ) ) --> ( ( ( 1st `  F ) `
 <. x ,  y
>. ) ( Hom  `  E
) ( ( 1st `  F ) `  <. z ,  w >. )
) ) )
130128, 129mpbid 222 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) ) )  /\  ( z  e.  (
Base `  C )  /\  w  e.  ( Base `  D ) ) )  ->  ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. ) : ( ( x ( Hom  `  C
) z )  X.  ( y ( Hom  `  D ) w ) ) --> ( ( ( 1st `  F ) `
 <. x ,  y
>. ) ( Hom  `  E
) ( ( 1st `  F ) `  <. z ,  w >. )
) )
131 ffn 6045 . . . . . . . . . 10  |-  ( (
<. x ,  y >.
( 2nd `  F
) <. z ,  w >. ) : ( ( x ( Hom  `  C
) z )  X.  ( y ( Hom  `  D ) w ) ) --> ( ( ( 1st `  F ) `
 <. x ,  y
>. ) ( Hom  `  E
) ( ( 1st `  F ) `  <. z ,  w >. )
)  ->  ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. )  Fn  ( ( x ( Hom  `  C
) z )  X.  ( y ( Hom  `  D ) w ) ) )
132130, 131syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) ) )  /\  ( z  e.  (
Base `  C )  /\  w  e.  ( Base `  D ) ) )  ->  ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. )  Fn  ( ( x ( Hom  `  C
) z )  X.  ( y ( Hom  `  D ) w ) ) )
133 eqfnov2 6767 . . . . . . . . 9  |-  ( ( ( <. x ,  y
>. ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. )  Fn  ( ( x ( Hom  `  C
) z )  X.  ( y ( Hom  `  D ) w ) )  /\  ( <.
x ,  y >.
( 2nd `  F
) <. z ,  w >. )  Fn  ( ( x ( Hom  `  C
) z )  X.  ( y ( Hom  `  D ) w ) ) )  ->  (
( <. x ,  y
>. ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. )  =  ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. )  <->  A. f  e.  (
x ( Hom  `  C
) z ) A. g  e.  ( y
( Hom  `  D ) w ) ( f ( <. x ,  y
>. ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. ) g )  =  ( f ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. ) g ) ) )
134127, 132, 133syl2anc 693 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) ) )  /\  ( z  e.  (
Base `  C )  /\  w  e.  ( Base `  D ) ) )  ->  ( ( <. x ,  y >.
( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. )  =  ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. )  <->  A. f  e.  (
x ( Hom  `  C
) z ) A. g  e.  ( y
( Hom  `  D ) w ) ( f ( <. x ,  y
>. ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. ) g )  =  ( f ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. ) g ) ) )
135119, 134mpbird 247 . . . . . . 7  |-  ( ( ( ph  /\  (
x  e.  ( Base `  C )  /\  y  e.  ( Base `  D
) ) )  /\  ( z  e.  (
Base `  C )  /\  w  e.  ( Base `  D ) ) )  ->  ( <. x ,  y >. ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. )  =  ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. ) )
136135ralrimivva 2971 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  C
)  /\  y  e.  ( Base `  D )
) )  ->  A. z  e.  ( Base `  C
) A. w  e.  ( Base `  D
) ( <. x ,  y >. ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. )  =  ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. ) )
137136ralrimivva 2971 . . . . 5  |-  ( ph  ->  A. x  e.  (
Base `  C ) A. y  e.  ( Base `  D ) A. z  e.  ( Base `  C ) A. w  e.  ( Base `  D
) ( <. x ,  y >. ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. )  =  ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. ) )
138 oveq2 6658 . . . . . . . . 9  |-  ( v  =  <. z ,  w >.  ->  ( u ( 2nd `  ( <" C D E "> uncurryF  G ) ) v )  =  ( u ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. ) )
139 oveq2 6658 . . . . . . . . 9  |-  ( v  =  <. z ,  w >.  ->  ( u ( 2nd `  F ) v )  =  ( u ( 2nd `  F
) <. z ,  w >. ) )
140138, 139eqeq12d 2637 . . . . . . . 8  |-  ( v  =  <. z ,  w >.  ->  ( ( u ( 2nd `  ( <" C D E "> uncurryF  G ) ) v )  =  ( u ( 2nd `  F
) v )  <->  ( u
( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. )  =  ( u ( 2nd `  F )
<. z ,  w >. ) ) )
141140ralxp 5263 . . . . . . 7  |-  ( A. v  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ( u ( 2nd `  ( <" C D E "> uncurryF  G ) ) v )  =  ( u ( 2nd `  F
) v )  <->  A. z  e.  ( Base `  C
) A. w  e.  ( Base `  D
) ( u ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. )  =  ( u ( 2nd `  F )
<. z ,  w >. ) )
142 oveq1 6657 . . . . . . . . 9  |-  ( u  =  <. x ,  y
>.  ->  ( u ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. )  =  ( <. x ,  y >. ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. ) )
143 oveq1 6657 . . . . . . . . 9  |-  ( u  =  <. x ,  y
>.  ->  ( u ( 2nd `  F )
<. z ,  w >. )  =  ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. ) )
144142, 143eqeq12d 2637 . . . . . . . 8  |-  ( u  =  <. x ,  y
>.  ->  ( ( u ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. )  =  ( u ( 2nd `  F )
<. z ,  w >. )  <-> 
( <. x ,  y
>. ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. )  =  ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. ) ) )
1451442ralbidv 2989 . . . . . . 7  |-  ( u  =  <. x ,  y
>.  ->  ( A. z  e.  ( Base `  C
) A. w  e.  ( Base `  D
) ( u ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. )  =  ( u ( 2nd `  F )
<. z ,  w >. )  <->  A. z  e.  ( Base `  C ) A. w  e.  ( Base `  D ) ( <.
x ,  y >.
( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. )  =  ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. ) ) )
146141, 145syl5bb 272 . . . . . 6  |-  ( u  =  <. x ,  y
>.  ->  ( A. v  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) ( u ( 2nd `  ( <" C D E "> uncurryF  G ) ) v )  =  ( u ( 2nd `  F
) v )  <->  A. z  e.  ( Base `  C
) A. w  e.  ( Base `  D
) ( <. x ,  y >. ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. )  =  ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. ) ) )
147146ralxp 5263 . . . . 5  |-  ( A. u  e.  ( ( Base `  C )  X.  ( Base `  D
) ) A. v  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) ( u ( 2nd `  ( <" C D E "> uncurryF  G ) ) v )  =  ( u ( 2nd `  F
) v )  <->  A. x  e.  ( Base `  C
) A. y  e.  ( Base `  D
) A. z  e.  ( Base `  C
) A. w  e.  ( Base `  D
) ( <. x ,  y >. ( 2nd `  ( <" C D E "> uncurryF  G ) ) <.
z ,  w >. )  =  ( <. x ,  y >. ( 2nd `  F ) <.
z ,  w >. ) )
148137, 147sylibr 224 . . . 4  |-  ( ph  ->  A. u  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) A. v  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ( u ( 2nd `  ( <" C D E "> uncurryF  G ) ) v )  =  ( u ( 2nd `  F
) v ) )
14926, 31funcfn2 16529 . . . . 5  |-  ( ph  ->  ( 2nd `  ( <" C D E "> uncurryF  G ) )  Fn  ( ( ( Base `  C )  X.  ( Base `  D ) )  X.  ( ( Base `  C )  X.  ( Base `  D ) ) ) )
15026, 36funcfn2 16529 . . . . 5  |-  ( ph  ->  ( 2nd `  F
)  Fn  ( ( ( Base `  C
)  X.  ( Base `  D ) )  X.  ( ( Base `  C
)  X.  ( Base `  D ) ) ) )
151 eqfnov2 6767 . . . . 5  |-  ( ( ( 2nd `  ( <" C D E "> uncurryF  G ) )  Fn  ( ( ( Base `  C )  X.  ( Base `  D ) )  X.  ( ( Base `  C )  X.  ( Base `  D ) ) )  /\  ( 2nd `  F )  Fn  (
( ( Base `  C
)  X.  ( Base `  D ) )  X.  ( ( Base `  C
)  X.  ( Base `  D ) ) ) )  ->  ( ( 2nd `  ( <" C D E "> uncurryF  G ) )  =  ( 2nd `  F
)  <->  A. u  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) A. v  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ( u ( 2nd `  ( <" C D E "> uncurryF  G ) ) v )  =  ( u ( 2nd `  F
) v ) ) )
152149, 150, 151syl2anc 693 . . . 4  |-  ( ph  ->  ( ( 2nd `  ( <" C D E "> uncurryF  G ) )  =  ( 2nd `  F
)  <->  A. u  e.  ( ( Base `  C
)  X.  ( Base `  D ) ) A. v  e.  ( ( Base `  C )  X.  ( Base `  D
) ) ( u ( 2nd `  ( <" C D E "> uncurryF  G ) ) v )  =  ( u ( 2nd `  F
) v ) ) )
153148, 152mpbird 247 . . 3  |-  ( ph  ->  ( 2nd `  ( <" C D E "> uncurryF  G ) )  =  ( 2nd `  F
) )
15442, 153opeq12d 4410 . 2  |-  ( ph  -> 
<. ( 1st `  ( <" C D E "> uncurryF  G ) ) ,  ( 2nd `  ( <" C D E "> uncurryF  G ) ) >.  =  <. ( 1st `  F
) ,  ( 2nd `  F ) >. )
155 1st2nd 7214 . . 3  |-  ( ( Rel  ( ( C  X.c  D )  Func  E
)  /\  ( <" C D E "> uncurryF  G )  e.  ( ( C  X.c  D )  Func  E
) )  ->  ( <" C D E "> uncurryF  G )  =  <. ( 1st `  ( <" C D E "> uncurryF  G ) ) ,  ( 2nd `  ( <" C D E "> uncurryF  G ) ) >.
)
15628, 29, 155sylancr 695 . 2  |-  ( ph  ->  ( <" C D E "> uncurryF  G )  =  <. ( 1st `  ( <" C D E "> uncurryF  G ) ) ,  ( 2nd `  ( <" C D E "> uncurryF  G ) ) >.
)
157 1st2nd 7214 . . 3  |-  ( ( Rel  ( ( C  X.c  D )  Func  E
)  /\  F  e.  ( ( C  X.c  D
)  Func  E )
)  ->  F  =  <. ( 1st `  F
) ,  ( 2nd `  F ) >. )
15828, 4, 157sylancr 695 . 2  |-  ( ph  ->  F  =  <. ( 1st `  F ) ,  ( 2nd `  F
) >. )
159154, 156, 1583eqtr4d 2666 1  |-  ( ph  ->  ( <" C D E "> uncurryF  G )  =  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   <.cop 4183   class class class wbr 4653    X. cxp 5112   Rel wrel 5119    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   <"cs3 13587   Basecbs 15857   Hom chom 15952  compcco 15953   Catccat 16325   Idccid 16326    Func cfunc 16514   FuncCat cfuc 16602    X.c cxpc 16808   curryF ccurf 16850   uncurryF cuncf 16851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-hom 15966  df-cco 15967  df-cat 16329  df-cid 16330  df-func 16518  df-cofu 16520  df-nat 16603  df-fuc 16604  df-xpc 16812  df-1stf 16813  df-2ndf 16814  df-prf 16815  df-evlf 16853  df-curf 16854  df-uncf 16855
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator