Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihfval Structured version   Visualization version   Unicode version

Theorem dihfval 36520
Description: Isomorphism H for a lattice  K. Definition of isomorphism map in [Crawley] p. 122 line 3. (Contributed by NM, 28-Jan-2014.)
Hypotheses
Ref Expression
dihval.b  |-  B  =  ( Base `  K
)
dihval.l  |-  .<_  =  ( le `  K )
dihval.j  |-  .\/  =  ( join `  K )
dihval.m  |-  ./\  =  ( meet `  K )
dihval.a  |-  A  =  ( Atoms `  K )
dihval.h  |-  H  =  ( LHyp `  K
)
dihval.i  |-  I  =  ( ( DIsoH `  K
) `  W )
dihval.d  |-  D  =  ( ( DIsoB `  K
) `  W )
dihval.c  |-  C  =  ( ( DIsoC `  K
) `  W )
dihval.u  |-  U  =  ( ( DVecH `  K
) `  W )
dihval.s  |-  S  =  ( LSubSp `  U )
dihval.p  |-  .(+)  =  (
LSSum `  U )
Assertion
Ref Expression
dihfval  |-  ( ( K  e.  V  /\  W  e.  H )  ->  I  =  ( x  e.  B  |->  if ( x  .<_  W , 
( D `  x
) ,  ( iota_ u  e.  S  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  (
x  ./\  W )
)  =  x )  ->  u  =  ( ( C `  q
)  .(+)  ( D `  ( x  ./\  W ) ) ) ) ) ) ) )
Distinct variable groups:    A, q    u, q, x, K    x, B    u, S    W, q, u, x
Allowed substitution hints:    A( x, u)    B( u, q)    C( x, u, q)    D( x, u, q)    .(+) ( x, u, q)    S( x, q)    U( x, u, q)    H( x, u, q)    I( x, u, q)    .\/ ( x, u, q)    .<_ ( x, u, q)    ./\ (
x, u, q)    V( x, u, q)

Proof of Theorem dihfval
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 dihval.i . . 3  |-  I  =  ( ( DIsoH `  K
) `  W )
2 dihval.b . . . . 5  |-  B  =  ( Base `  K
)
3 dihval.l . . . . 5  |-  .<_  =  ( le `  K )
4 dihval.j . . . . 5  |-  .\/  =  ( join `  K )
5 dihval.m . . . . 5  |-  ./\  =  ( meet `  K )
6 dihval.a . . . . 5  |-  A  =  ( Atoms `  K )
7 dihval.h . . . . 5  |-  H  =  ( LHyp `  K
)
82, 3, 4, 5, 6, 7dihffval 36519 . . . 4  |-  ( K  e.  V  ->  ( DIsoH `  K )  =  ( w  e.  H  |->  ( x  e.  B  |->  if ( x  .<_  w ,  ( ( (
DIsoB `  K ) `  w ) `  x
) ,  ( iota_ u  e.  ( LSubSp `  (
( DVecH `  K ) `  w ) ) A. q  e.  A  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) ) ) ) )
98fveq1d 6193 . . 3  |-  ( K  e.  V  ->  (
( DIsoH `  K ) `  W )  =  ( ( w  e.  H  |->  ( x  e.  B  |->  if ( x  .<_  w ,  ( ( (
DIsoB `  K ) `  w ) `  x
) ,  ( iota_ u  e.  ( LSubSp `  (
( DVecH `  K ) `  w ) ) A. q  e.  A  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) ) ) ) `
 W ) )
101, 9syl5eq 2668 . 2  |-  ( K  e.  V  ->  I  =  ( ( w  e.  H  |->  ( x  e.  B  |->  if ( x  .<_  w , 
( ( ( DIsoB `  K ) `  w
) `  x ) ,  ( iota_ u  e.  ( LSubSp `  ( ( DVecH `  K ) `  w ) ) A. q  e.  A  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) ) ) ) `
 W ) )
11 breq2 4657 . . . . 5  |-  ( w  =  W  ->  (
x  .<_  w  <->  x  .<_  W ) )
12 fveq2 6191 . . . . . . 7  |-  ( w  =  W  ->  (
( DIsoB `  K ) `  w )  =  ( ( DIsoB `  K ) `  W ) )
13 dihval.d . . . . . . 7  |-  D  =  ( ( DIsoB `  K
) `  W )
1412, 13syl6eqr 2674 . . . . . 6  |-  ( w  =  W  ->  (
( DIsoB `  K ) `  w )  =  D )
1514fveq1d 6193 . . . . 5  |-  ( w  =  W  ->  (
( ( DIsoB `  K
) `  w ) `  x )  =  ( D `  x ) )
16 fveq2 6191 . . . . . . . . 9  |-  ( w  =  W  ->  (
( DVecH `  K ) `  w )  =  ( ( DVecH `  K ) `  W ) )
17 dihval.u . . . . . . . . 9  |-  U  =  ( ( DVecH `  K
) `  W )
1816, 17syl6eqr 2674 . . . . . . . 8  |-  ( w  =  W  ->  (
( DVecH `  K ) `  w )  =  U )
1918fveq2d 6195 . . . . . . 7  |-  ( w  =  W  ->  ( LSubSp `
 ( ( DVecH `  K ) `  w
) )  =  (
LSubSp `  U ) )
20 dihval.s . . . . . . 7  |-  S  =  ( LSubSp `  U )
2119, 20syl6eqr 2674 . . . . . 6  |-  ( w  =  W  ->  ( LSubSp `
 ( ( DVecH `  K ) `  w
) )  =  S )
22 breq2 4657 . . . . . . . . . 10  |-  ( w  =  W  ->  (
q  .<_  w  <->  q  .<_  W ) )
2322notbid 308 . . . . . . . . 9  |-  ( w  =  W  ->  ( -.  q  .<_  w  <->  -.  q  .<_  W ) )
24 oveq2 6658 . . . . . . . . . . 11  |-  ( w  =  W  ->  (
x  ./\  w )  =  ( x  ./\  W ) )
2524oveq2d 6666 . . . . . . . . . 10  |-  ( w  =  W  ->  (
q  .\/  ( x  ./\  w ) )  =  ( q  .\/  (
x  ./\  W )
) )
2625eqeq1d 2624 . . . . . . . . 9  |-  ( w  =  W  ->  (
( q  .\/  (
x  ./\  w )
)  =  x  <->  ( q  .\/  ( x  ./\  W
) )  =  x ) )
2723, 26anbi12d 747 . . . . . . . 8  |-  ( w  =  W  ->  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  <-> 
( -.  q  .<_  W  /\  ( q  .\/  ( x  ./\  W ) )  =  x ) ) )
2818fveq2d 6195 . . . . . . . . . . 11  |-  ( w  =  W  ->  ( LSSum `  ( ( DVecH `  K ) `  w
) )  =  (
LSSum `  U ) )
29 dihval.p . . . . . . . . . . 11  |-  .(+)  =  (
LSSum `  U )
3028, 29syl6eqr 2674 . . . . . . . . . 10  |-  ( w  =  W  ->  ( LSSum `  ( ( DVecH `  K ) `  w
) )  =  .(+)  )
31 fveq2 6191 . . . . . . . . . . . 12  |-  ( w  =  W  ->  (
( DIsoC `  K ) `  w )  =  ( ( DIsoC `  K ) `  W ) )
32 dihval.c . . . . . . . . . . . 12  |-  C  =  ( ( DIsoC `  K
) `  W )
3331, 32syl6eqr 2674 . . . . . . . . . . 11  |-  ( w  =  W  ->  (
( DIsoC `  K ) `  w )  =  C )
3433fveq1d 6193 . . . . . . . . . 10  |-  ( w  =  W  ->  (
( ( DIsoC `  K
) `  w ) `  q )  =  ( C `  q ) )
3514, 24fveq12d 6197 . . . . . . . . . 10  |-  ( w  =  W  ->  (
( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) )  =  ( D `  ( x 
./\  W ) ) )
3630, 34, 35oveq123d 6671 . . . . . . . . 9  |-  ( w  =  W  ->  (
( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) )  =  ( ( C `  q )  .(+)  ( D `
 ( x  ./\  W ) ) ) )
3736eqeq2d 2632 . . . . . . . 8  |-  ( w  =  W  ->  (
u  =  ( ( ( ( DIsoC `  K
) `  w ) `  q ) ( LSSum `  ( ( DVecH `  K
) `  w )
) ( ( (
DIsoB `  K ) `  w ) `  (
x  ./\  w )
) )  <->  u  =  ( ( C `  q )  .(+)  ( D `
 ( x  ./\  W ) ) ) ) )
3827, 37imbi12d 334 . . . . . . 7  |-  ( w  =  W  ->  (
( ( -.  q  .<_  w  /\  ( q 
.\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w ) `  q
) ( LSSum `  (
( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) )  <-> 
( ( -.  q  .<_  W  /\  ( q 
.\/  ( x  ./\  W ) )  =  x )  ->  u  =  ( ( C `  q )  .(+)  ( D `
 ( x  ./\  W ) ) ) ) ) )
3938ralbidv 2986 . . . . . 6  |-  ( w  =  W  ->  ( A. q  e.  A  ( ( -.  q  .<_  w  /\  ( q 
.\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w ) `  q
) ( LSSum `  (
( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) )  <->  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q 
.\/  ( x  ./\  W ) )  =  x )  ->  u  =  ( ( C `  q )  .(+)  ( D `
 ( x  ./\  W ) ) ) ) ) )
4021, 39riotaeqbidv 6614 . . . . 5  |-  ( w  =  W  ->  ( iota_ u  e.  ( LSubSp `  ( ( DVecH `  K
) `  w )
) A. q  e.  A  ( ( -.  q  .<_  w  /\  ( q  .\/  (
x  ./\  w )
)  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) )  =  ( iota_ u  e.  S  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  (
x  ./\  W )
)  =  x )  ->  u  =  ( ( C `  q
)  .(+)  ( D `  ( x  ./\  W ) ) ) ) ) )
4111, 15, 40ifbieq12d 4113 . . . 4  |-  ( w  =  W  ->  if ( x  .<_  w ,  ( ( ( DIsoB `  K ) `  w
) `  x ) ,  ( iota_ u  e.  ( LSubSp `  ( ( DVecH `  K ) `  w ) ) A. q  e.  A  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) )  =  if ( x  .<_  W , 
( D `  x
) ,  ( iota_ u  e.  S  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  (
x  ./\  W )
)  =  x )  ->  u  =  ( ( C `  q
)  .(+)  ( D `  ( x  ./\  W ) ) ) ) ) ) )
4241mpteq2dv 4745 . . 3  |-  ( w  =  W  ->  (
x  e.  B  |->  if ( x  .<_  w ,  ( ( ( DIsoB `  K ) `  w
) `  x ) ,  ( iota_ u  e.  ( LSubSp `  ( ( DVecH `  K ) `  w ) ) A. q  e.  A  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) ) )  =  ( x  e.  B  |->  if ( x  .<_  W ,  ( D `  x ) ,  (
iota_ u  e.  S  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q 
.\/  ( x  ./\  W ) )  =  x )  ->  u  =  ( ( C `  q )  .(+)  ( D `
 ( x  ./\  W ) ) ) ) ) ) ) )
43 eqid 2622 . . 3  |-  ( w  e.  H  |->  ( x  e.  B  |->  if ( x  .<_  w , 
( ( ( DIsoB `  K ) `  w
) `  x ) ,  ( iota_ u  e.  ( LSubSp `  ( ( DVecH `  K ) `  w ) ) A. q  e.  A  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) ) ) )  =  ( w  e.  H  |->  ( x  e.  B  |->  if ( x 
.<_  w ,  ( ( ( DIsoB `  K ) `  w ) `  x
) ,  ( iota_ u  e.  ( LSubSp `  (
( DVecH `  K ) `  w ) ) A. q  e.  A  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) ) ) )
44 fvex 6201 . . . . 5  |-  ( Base `  K )  e.  _V
452, 44eqeltri 2697 . . . 4  |-  B  e. 
_V
4645mptex 6486 . . 3  |-  ( x  e.  B  |->  if ( x  .<_  W , 
( D `  x
) ,  ( iota_ u  e.  S  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  (
x  ./\  W )
)  =  x )  ->  u  =  ( ( C `  q
)  .(+)  ( D `  ( x  ./\  W ) ) ) ) ) ) )  e.  _V
4742, 43, 46fvmpt 6282 . 2  |-  ( W  e.  H  ->  (
( w  e.  H  |->  ( x  e.  B  |->  if ( x  .<_  w ,  ( ( (
DIsoB `  K ) `  w ) `  x
) ,  ( iota_ u  e.  ( LSubSp `  (
( DVecH `  K ) `  w ) ) A. q  e.  A  (
( -.  q  .<_  w  /\  ( q  .\/  ( x  ./\  w ) )  =  x )  ->  u  =  ( ( ( ( DIsoC `  K ) `  w
) `  q )
( LSSum `  ( ( DVecH `  K ) `  w ) ) ( ( ( DIsoB `  K
) `  w ) `  ( x  ./\  w
) ) ) ) ) ) ) ) `
 W )  =  ( x  e.  B  |->  if ( x  .<_  W ,  ( D `  x ) ,  (
iota_ u  e.  S  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q 
.\/  ( x  ./\  W ) )  =  x )  ->  u  =  ( ( C `  q )  .(+)  ( D `
 ( x  ./\  W ) ) ) ) ) ) ) )
4810, 47sylan9eq 2676 1  |-  ( ( K  e.  V  /\  W  e.  H )  ->  I  =  ( x  e.  B  |->  if ( x  .<_  W , 
( D `  x
) ,  ( iota_ u  e.  S  A. q  e.  A  ( ( -.  q  .<_  W  /\  ( q  .\/  (
x  ./\  W )
)  =  x )  ->  u  =  ( ( C `  q
)  .(+)  ( D `  ( x  ./\  W ) ) ) ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   ifcif 4086   class class class wbr 4653    |-> cmpt 4729   ` cfv 5888   iota_crio 6610  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   meetcmee 16945   LSSumclsm 18049   LSubSpclss 18932   Atomscatm 34550   LHypclh 35270   DVecHcdvh 36367   DIsoBcdib 36427   DIsoCcdic 36461   DIsoHcdih 36517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-dih 36518
This theorem is referenced by:  dihval  36521  dihf11lem  36555
  Copyright terms: Public domain W3C validator