| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjdifprg | Structured version Visualization version Unicode version | ||
| Description: A trivial partition into a subset and its complement. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
| Ref | Expression |
|---|---|
| disjdifprg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjxsn 4646 |
. . . . . 6
| |
| 2 | simpr 477 |
. . . . . . . 8
| |
| 3 | eqidd 2623 |
. . . . . . . 8
| |
| 4 | elex 3212 |
. . . . . . . . . 10
| |
| 5 | 0ex 4790 |
. . . . . . . . . . 11
| |
| 6 | 5 | a1i 11 |
. . . . . . . . . 10
|
| 7 | 4, 6, 6 | preqsnd 4392 |
. . . . . . . . 9
|
| 8 | 7 | adantr 481 |
. . . . . . . 8
|
| 9 | 2, 3, 8 | mpbir2and 957 |
. . . . . . 7
|
| 10 | 9 | disjeq1d 4628 |
. . . . . 6
|
| 11 | 1, 10 | mpbiri 248 |
. . . . 5
|
| 12 | in0 3968 |
. . . . . 6
| |
| 13 | 4 | adantr 481 |
. . . . . . 7
|
| 14 | 5 | a1i 11 |
. . . . . . 7
|
| 15 | simpr 477 |
. . . . . . 7
| |
| 16 | id 22 |
. . . . . . . 8
| |
| 17 | id 22 |
. . . . . . . 8
| |
| 18 | 16, 17 | disjprg 4648 |
. . . . . . 7
|
| 19 | 13, 14, 15, 18 | syl3anc 1326 |
. . . . . 6
|
| 20 | 12, 19 | mpbiri 248 |
. . . . 5
|
| 21 | 11, 20 | pm2.61dane 2881 |
. . . 4
|
| 22 | 21 | ad2antlr 763 |
. . 3
|
| 23 | difeq2 3722 |
. . . . . . 7
| |
| 24 | dif0 3950 |
. . . . . . 7
| |
| 25 | 23, 24 | syl6eq 2672 |
. . . . . 6
|
| 26 | id 22 |
. . . . . 6
| |
| 27 | 25, 26 | preq12d 4276 |
. . . . 5
|
| 28 | 27 | disjeq1d 4628 |
. . . 4
|
| 29 | 28 | adantl 482 |
. . 3
|
| 30 | 22, 29 | mpbird 247 |
. 2
|
| 31 | incom 3805 |
. . . 4
| |
| 32 | disjdif 4040 |
. . . 4
| |
| 33 | 31, 32 | eqtr3i 2646 |
. . 3
|
| 34 | difexg 4808 |
. . . . 5
| |
| 35 | 34 | ad2antlr 763 |
. . . 4
|
| 36 | elex 3212 |
. . . . 5
| |
| 37 | 36 | ad2antrr 762 |
. . . 4
|
| 38 | ssid 3624 |
. . . . . 6
| |
| 39 | ssdifeq0 4051 |
. . . . . . . 8
| |
| 40 | 39 | notbii 310 |
. . . . . . 7
|
| 41 | nssne2 3662 |
. . . . . . 7
| |
| 42 | 40, 41 | sylan2br 493 |
. . . . . 6
|
| 43 | 38, 42 | mpan 706 |
. . . . 5
|
| 44 | 43 | adantl 482 |
. . . 4
|
| 45 | id 22 |
. . . . 5
| |
| 46 | id 22 |
. . . . 5
| |
| 47 | 45, 46 | disjprg 4648 |
. . . 4
|
| 48 | 35, 37, 44, 47 | syl3anc 1326 |
. . 3
|
| 49 | 33, 48 | mpbiri 248 |
. 2
|
| 50 | 30, 49 | pm2.61dan 832 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-sn 4178 df-pr 4180 df-disj 4621 |
| This theorem is referenced by: disjdifprg2 29389 measssd 30278 |
| Copyright terms: Public domain | W3C validator |