| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjprg | Structured version Visualization version Unicode version | ||
| Description: A pair collection is disjoint iff the two sets in the family have empty intersection. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| disjprg.1 |
|
| disjprg.2 |
|
| Ref | Expression |
|---|---|
| disjprg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2626 |
. . . . . . 7
| |
| 2 | nfcv 2764 |
. . . . . . . . . 10
| |
| 3 | nfcv 2764 |
. . . . . . . . . 10
| |
| 4 | disjprg.1 |
. . . . . . . . . 10
| |
| 5 | 2, 3, 4 | csbhypf 3552 |
. . . . . . . . 9
|
| 6 | 5 | ineq1d 3813 |
. . . . . . . 8
|
| 7 | 6 | eqeq1d 2624 |
. . . . . . 7
|
| 8 | 1, 7 | orbi12d 746 |
. . . . . 6
|
| 9 | 8 | ralbidv 2986 |
. . . . 5
|
| 10 | eqeq1 2626 |
. . . . . . 7
| |
| 11 | nfcv 2764 |
. . . . . . . . . 10
| |
| 12 | nfcv 2764 |
. . . . . . . . . 10
| |
| 13 | disjprg.2 |
. . . . . . . . . 10
| |
| 14 | 11, 12, 13 | csbhypf 3552 |
. . . . . . . . 9
|
| 15 | 14 | ineq1d 3813 |
. . . . . . . 8
|
| 16 | 15 | eqeq1d 2624 |
. . . . . . 7
|
| 17 | 10, 16 | orbi12d 746 |
. . . . . 6
|
| 18 | 17 | ralbidv 2986 |
. . . . 5
|
| 19 | 9, 18 | ralprg 4234 |
. . . 4
|
| 20 | 19 | 3adant3 1081 |
. . 3
|
| 21 | id 22 |
. . . . . . . . . 10
| |
| 22 | 21 | eqcomd 2628 |
. . . . . . . . 9
|
| 23 | 22 | orcd 407 |
. . . . . . . 8
|
| 24 | a1tru 1500 |
. . . . . . . 8
| |
| 25 | 23, 24 | 2thd 255 |
. . . . . . 7
|
| 26 | eqeq2 2633 |
. . . . . . . 8
| |
| 27 | 11, 12, 13 | csbhypf 3552 |
. . . . . . . . . 10
|
| 28 | 27 | ineq2d 3814 |
. . . . . . . . 9
|
| 29 | 28 | eqeq1d 2624 |
. . . . . . . 8
|
| 30 | 26, 29 | orbi12d 746 |
. . . . . . 7
|
| 31 | 25, 30 | ralprg 4234 |
. . . . . 6
|
| 32 | 31 | 3adant3 1081 |
. . . . 5
|
| 33 | simp3 1063 |
. . . . . . . 8
| |
| 34 | 33 | neneqd 2799 |
. . . . . . 7
|
| 35 | biorf 420 |
. . . . . . 7
| |
| 36 | 34, 35 | syl 17 |
. . . . . 6
|
| 37 | tru 1487 |
. . . . . . 7
| |
| 38 | 37 | biantrur 527 |
. . . . . 6
|
| 39 | 36, 38 | syl6bb 276 |
. . . . 5
|
| 40 | 32, 39 | bitr4d 271 |
. . . 4
|
| 41 | eqeq2 2633 |
. . . . . . . . 9
| |
| 42 | eqcom 2629 |
. . . . . . . . 9
| |
| 43 | 41, 42 | syl6bb 276 |
. . . . . . . 8
|
| 44 | 2, 3, 4 | csbhypf 3552 |
. . . . . . . . . . 11
|
| 45 | 44 | ineq2d 3814 |
. . . . . . . . . 10
|
| 46 | incom 3805 |
. . . . . . . . . 10
| |
| 47 | 45, 46 | syl6eq 2672 |
. . . . . . . . 9
|
| 48 | 47 | eqeq1d 2624 |
. . . . . . . 8
|
| 49 | 43, 48 | orbi12d 746 |
. . . . . . 7
|
| 50 | id 22 |
. . . . . . . . . 10
| |
| 51 | 50 | eqcomd 2628 |
. . . . . . . . 9
|
| 52 | 51 | orcd 407 |
. . . . . . . 8
|
| 53 | a1tru 1500 |
. . . . . . . 8
| |
| 54 | 52, 53 | 2thd 255 |
. . . . . . 7
|
| 55 | 49, 54 | ralprg 4234 |
. . . . . 6
|
| 56 | 55 | 3adant3 1081 |
. . . . 5
|
| 57 | 37 | biantru 526 |
. . . . . 6
|
| 58 | 36, 57 | syl6bb 276 |
. . . . 5
|
| 59 | 56, 58 | bitr4d 271 |
. . . 4
|
| 60 | 40, 59 | anbi12d 747 |
. . 3
|
| 61 | 20, 60 | bitrd 268 |
. 2
|
| 62 | disjors 4635 |
. 2
| |
| 63 | pm4.24 675 |
. 2
| |
| 64 | 61, 62, 63 | 3bitr4g 303 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-nul 3916 df-sn 4178 df-pr 4180 df-disj 4621 |
| This theorem is referenced by: disjdifprg 29388 unelldsys 30221 pmeasmono 30386 probun 30481 meadjun 40679 |
| Copyright terms: Public domain | W3C validator |