MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disji Structured version   Visualization version   Unicode version

Theorem disji 4637
Description: Property of a disjoint collection: if  B ( X )  =  C and  B ( Y )  =  D have a common element  Z, then  X  =  Y. (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypotheses
Ref Expression
disji.1  |-  ( x  =  X  ->  B  =  C )
disji.2  |-  ( x  =  Y  ->  B  =  D )
Assertion
Ref Expression
disji  |-  ( (Disj  x  e.  A  B  /\  ( X  e.  A  /\  Y  e.  A
)  /\  ( Z  e.  C  /\  Z  e.  D ) )  ->  X  =  Y )
Distinct variable groups:    x, A    x, C    x, D    x, X    x, Y
Allowed substitution hints:    B( x)    Z( x)

Proof of Theorem disji
StepHypRef Expression
1 inelcm 4032 . 2  |-  ( ( Z  e.  C  /\  Z  e.  D )  ->  ( C  i^i  D
)  =/=  (/) )
2 disji.1 . . . . . 6  |-  ( x  =  X  ->  B  =  C )
3 disji.2 . . . . . 6  |-  ( x  =  Y  ->  B  =  D )
42, 3disji2 4636 . . . . 5  |-  ( (Disj  x  e.  A  B  /\  ( X  e.  A  /\  Y  e.  A
)  /\  X  =/=  Y )  ->  ( C  i^i  D )  =  (/) )
543expia 1267 . . . 4  |-  ( (Disj  x  e.  A  B  /\  ( X  e.  A  /\  Y  e.  A
) )  ->  ( X  =/=  Y  ->  ( C  i^i  D )  =  (/) ) )
65necon1d 2816 . . 3  |-  ( (Disj  x  e.  A  B  /\  ( X  e.  A  /\  Y  e.  A
) )  ->  (
( C  i^i  D
)  =/=  (/)  ->  X  =  Y ) )
763impia 1261 . 2  |-  ( (Disj  x  e.  A  B  /\  ( X  e.  A  /\  Y  e.  A
)  /\  ( C  i^i  D )  =/=  (/) )  ->  X  =  Y )
81, 7syl3an3 1361 1  |-  ( (Disj  x  e.  A  B  /\  ( X  e.  A  /\  Y  e.  A
)  /\  ( Z  e.  C  /\  Z  e.  D ) )  ->  X  =  Y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    i^i cin 3573   (/)c0 3915  Disj wdisj 4620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-in 3581  df-nul 3916  df-disj 4621
This theorem is referenced by:  volfiniun  23315
  Copyright terms: Public domain W3C validator