MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disji2 Structured version   Visualization version   Unicode version

Theorem disji2 4636
Description: Property of a disjoint collection: if  B ( X )  =  C and  B ( Y )  =  D, and  X  =/=  Y, then  C and  D are disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypotheses
Ref Expression
disji.1  |-  ( x  =  X  ->  B  =  C )
disji.2  |-  ( x  =  Y  ->  B  =  D )
Assertion
Ref Expression
disji2  |-  ( (Disj  x  e.  A  B  /\  ( X  e.  A  /\  Y  e.  A
)  /\  X  =/=  Y )  ->  ( C  i^i  D )  =  (/) )
Distinct variable groups:    x, A    x, C    x, D    x, X    x, Y
Allowed substitution hint:    B( x)

Proof of Theorem disji2
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ne 2795 . . 3  |-  ( X  =/=  Y  <->  -.  X  =  Y )
2 disjors 4635 . . . . . 6  |-  (Disj  x  e.  A  B  <->  A. y  e.  A  A. z  e.  A  ( y  =  z  \/  ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/) ) )
3 eqeq1 2626 . . . . . . . 8  |-  ( y  =  X  ->  (
y  =  z  <->  X  =  z ) )
4 nfcv 2764 . . . . . . . . . . 11  |-  F/_ x X
5 nfcv 2764 . . . . . . . . . . 11  |-  F/_ x C
6 disji.1 . . . . . . . . . . 11  |-  ( x  =  X  ->  B  =  C )
74, 5, 6csbhypf 3552 . . . . . . . . . 10  |-  ( y  =  X  ->  [_ y  /  x ]_ B  =  C )
87ineq1d 3813 . . . . . . . . 9  |-  ( y  =  X  ->  ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  ( C  i^i  [_ z  /  x ]_ B ) )
98eqeq1d 2624 . . . . . . . 8  |-  ( y  =  X  ->  (
( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/)  <->  ( C  i^i  [_ z  /  x ]_ B )  =  (/) ) )
103, 9orbi12d 746 . . . . . . 7  |-  ( y  =  X  ->  (
( y  =  z  \/  ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/) ) 
<->  ( X  =  z  \/  ( C  i^i  [_ z  /  x ]_ B )  =  (/) ) ) )
11 eqeq2 2633 . . . . . . . 8  |-  ( z  =  Y  ->  ( X  =  z  <->  X  =  Y ) )
12 nfcv 2764 . . . . . . . . . . 11  |-  F/_ x Y
13 nfcv 2764 . . . . . . . . . . 11  |-  F/_ x D
14 disji.2 . . . . . . . . . . 11  |-  ( x  =  Y  ->  B  =  D )
1512, 13, 14csbhypf 3552 . . . . . . . . . 10  |-  ( z  =  Y  ->  [_ z  /  x ]_ B  =  D )
1615ineq2d 3814 . . . . . . . . 9  |-  ( z  =  Y  ->  ( C  i^i  [_ z  /  x ]_ B )  =  ( C  i^i  D ) )
1716eqeq1d 2624 . . . . . . . 8  |-  ( z  =  Y  ->  (
( C  i^i  [_ z  /  x ]_ B )  =  (/)  <->  ( C  i^i  D )  =  (/) ) )
1811, 17orbi12d 746 . . . . . . 7  |-  ( z  =  Y  ->  (
( X  =  z  \/  ( C  i^i  [_ z  /  x ]_ B )  =  (/) ) 
<->  ( X  =  Y  \/  ( C  i^i  D )  =  (/) ) ) )
1910, 18rspc2v 3322 . . . . . 6  |-  ( ( X  e.  A  /\  Y  e.  A )  ->  ( A. y  e.  A  A. z  e.  A  ( y  =  z  \/  ( [_ y  /  x ]_ B  i^i  [_ z  /  x ]_ B )  =  (/) )  ->  ( X  =  Y  \/  ( C  i^i  D )  =  (/) ) ) )
202, 19syl5bi 232 . . . . 5  |-  ( ( X  e.  A  /\  Y  e.  A )  ->  (Disj  x  e.  A  B  ->  ( X  =  Y  \/  ( C  i^i  D )  =  (/) ) ) )
2120impcom 446 . . . 4  |-  ( (Disj  x  e.  A  B  /\  ( X  e.  A  /\  Y  e.  A
) )  ->  ( X  =  Y  \/  ( C  i^i  D )  =  (/) ) )
2221ord 392 . . 3  |-  ( (Disj  x  e.  A  B  /\  ( X  e.  A  /\  Y  e.  A
) )  ->  ( -.  X  =  Y  ->  ( C  i^i  D
)  =  (/) ) )
231, 22syl5bi 232 . 2  |-  ( (Disj  x  e.  A  B  /\  ( X  e.  A  /\  Y  e.  A
) )  ->  ( X  =/=  Y  ->  ( C  i^i  D )  =  (/) ) )
24233impia 1261 1  |-  ( (Disj  x  e.  A  B  /\  ( X  e.  A  /\  Y  e.  A
)  /\  X  =/=  Y )  ->  ( C  i^i  D )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   [_csb 3533    i^i cin 3573   (/)c0 3915  Disj wdisj 4620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-in 3581  df-nul 3916  df-disj 4621
This theorem is referenced by:  disji  4637  disjxiun  4649  disjxiunOLD  4650  voliunlem1  23318  disjf1  39369
  Copyright terms: Public domain W3C validator