| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > invdisj | Structured version Visualization version Unicode version | ||
| Description: If there is a function
|
| Ref | Expression |
|---|---|
| invdisj |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfra2 2946 |
. . 3
| |
| 2 | df-ral 2917 |
. . . . 5
| |
| 3 | rsp 2929 |
. . . . . . . . 9
| |
| 4 | eqcom 2629 |
. . . . . . . . 9
| |
| 5 | 3, 4 | syl6ib 241 |
. . . . . . . 8
|
| 6 | 5 | imim2i 16 |
. . . . . . 7
|
| 7 | 6 | impd 447 |
. . . . . 6
|
| 8 | 7 | alimi 1739 |
. . . . 5
|
| 9 | 2, 8 | sylbi 207 |
. . . 4
|
| 10 | mo2icl 3385 |
. . . 4
| |
| 11 | 9, 10 | syl 17 |
. . 3
|
| 12 | 1, 11 | alrimi 2082 |
. 2
|
| 13 | dfdisj2 4622 |
. 2
| |
| 14 | 12, 13 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rmo 2920 df-v 3202 df-disj 4621 |
| This theorem is referenced by: invdisjrab 4639 ackbijnn 14560 incexc2 14570 phisum 15495 itg1addlem1 23459 musum 24917 lgsquadlem1 25105 lgsquadlem2 25106 disjabrex 29395 disjabrexf 29396 actfunsnrndisj 30683 poimirlem27 33436 |
| Copyright terms: Public domain | W3C validator |