MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invdisj Structured version   Visualization version   Unicode version

Theorem invdisj 4638
Description: If there is a function  C (
y ) such that  C (
y )  =  x for all  y  e.  B
( x ), then the sets  B ( x ) for distinct  x  e.  A are disjoint. (Contributed by Mario Carneiro, 10-Dec-2016.)
Assertion
Ref Expression
invdisj  |-  ( A. x  e.  A  A. y  e.  B  C  =  x  -> Disj  x  e.  A  B )
Distinct variable groups:    x, y    y, A    y, B    x, C
Allowed substitution hints:    A( x)    B( x)    C( y)

Proof of Theorem invdisj
StepHypRef Expression
1 nfra2 2946 . . 3  |-  F/ y A. x  e.  A  A. y  e.  B  C  =  x
2 df-ral 2917 . . . . 5  |-  ( A. x  e.  A  A. y  e.  B  C  =  x  <->  A. x ( x  e.  A  ->  A. y  e.  B  C  =  x ) )
3 rsp 2929 . . . . . . . . 9  |-  ( A. y  e.  B  C  =  x  ->  ( y  e.  B  ->  C  =  x ) )
4 eqcom 2629 . . . . . . . . 9  |-  ( C  =  x  <->  x  =  C )
53, 4syl6ib 241 . . . . . . . 8  |-  ( A. y  e.  B  C  =  x  ->  ( y  e.  B  ->  x  =  C ) )
65imim2i 16 . . . . . . 7  |-  ( ( x  e.  A  ->  A. y  e.  B  C  =  x )  ->  ( x  e.  A  ->  ( y  e.  B  ->  x  =  C ) ) )
76impd 447 . . . . . 6  |-  ( ( x  e.  A  ->  A. y  e.  B  C  =  x )  ->  ( ( x  e.  A  /\  y  e.  B )  ->  x  =  C ) )
87alimi 1739 . . . . 5  |-  ( A. x ( x  e.  A  ->  A. y  e.  B  C  =  x )  ->  A. x
( ( x  e.  A  /\  y  e.  B )  ->  x  =  C ) )
92, 8sylbi 207 . . . 4  |-  ( A. x  e.  A  A. y  e.  B  C  =  x  ->  A. x
( ( x  e.  A  /\  y  e.  B )  ->  x  =  C ) )
10 mo2icl 3385 . . . 4  |-  ( A. x ( ( x  e.  A  /\  y  e.  B )  ->  x  =  C )  ->  E* x ( x  e.  A  /\  y  e.  B ) )
119, 10syl 17 . . 3  |-  ( A. x  e.  A  A. y  e.  B  C  =  x  ->  E* x
( x  e.  A  /\  y  e.  B
) )
121, 11alrimi 2082 . 2  |-  ( A. x  e.  A  A. y  e.  B  C  =  x  ->  A. y E* x ( x  e.  A  /\  y  e.  B ) )
13 dfdisj2 4622 . 2  |-  (Disj  x  e.  A  B  <->  A. y E* x ( x  e.  A  /\  y  e.  B ) )
1412, 13sylibr 224 1  |-  ( A. x  e.  A  A. y  e.  B  C  =  x  -> Disj  x  e.  A  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990   E*wmo 2471   A.wral 2912  Disj wdisj 4620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rmo 2920  df-v 3202  df-disj 4621
This theorem is referenced by:  invdisjrab  4639  ackbijnn  14560  incexc2  14570  phisum  15495  itg1addlem1  23459  musum  24917  lgsquadlem1  25105  lgsquadlem2  25106  disjabrex  29395  disjabrexf  29396  actfunsnrndisj  30683  poimirlem27  33436
  Copyright terms: Public domain W3C validator