| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjss3 | Structured version Visualization version Unicode version | ||
| Description: Expand a disjoint collection with any number of empty sets. (Contributed by Mario Carneiro, 15-Nov-2016.) |
| Ref | Expression |
|---|---|
| disjss3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2917 |
. . . . . . 7
| |
| 2 | simprr 796 |
. . . . . . . . . . . 12
| |
| 3 | n0i 3920 |
. . . . . . . . . . . 12
| |
| 4 | 2, 3 | syl 17 |
. . . . . . . . . . 11
|
| 5 | simpl 473 |
. . . . . . . . . . . . 13
| |
| 6 | 5 | adantl 482 |
. . . . . . . . . . . 12
|
| 7 | eldif 3584 |
. . . . . . . . . . . . 13
| |
| 8 | simpl 473 |
. . . . . . . . . . . . 13
| |
| 9 | 7, 8 | syl5bir 233 |
. . . . . . . . . . . 12
|
| 10 | 6, 9 | mpand 711 |
. . . . . . . . . . 11
|
| 11 | 4, 10 | mt3d 140 |
. . . . . . . . . 10
|
| 12 | 11, 2 | jca 554 |
. . . . . . . . 9
|
| 13 | 12 | ex 450 |
. . . . . . . 8
|
| 14 | 13 | alimi 1739 |
. . . . . . 7
|
| 15 | 1, 14 | sylbi 207 |
. . . . . 6
|
| 16 | moim 2519 |
. . . . . 6
| |
| 17 | 15, 16 | syl 17 |
. . . . 5
|
| 18 | 17 | alimdv 1845 |
. . . 4
|
| 19 | dfdisj2 4622 |
. . . 4
| |
| 20 | dfdisj2 4622 |
. . . 4
| |
| 21 | 18, 19, 20 | 3imtr4g 285 |
. . 3
|
| 22 | 21 | adantl 482 |
. 2
|
| 23 | disjss1 4626 |
. . 3
| |
| 24 | 23 | adantr 481 |
. 2
|
| 25 | 22, 24 | impbid 202 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rmo 2920 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-nul 3916 df-disj 4621 |
| This theorem is referenced by: carsggect 30380 |
| Copyright terms: Public domain | W3C validator |