| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjxun | Structured version Visualization version Unicode version | ||
| Description: The union of two disjoint collections. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| disjxun.1 |
|
| Ref | Expression |
|---|---|
| disjxun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjel 4023 |
. . . . . . . . . . 11
| |
| 2 | eleq1 2689 |
. . . . . . . . . . . 12
| |
| 3 | 2 | notbid 308 |
. . . . . . . . . . 11
|
| 4 | 1, 3 | syl5ibcom 235 |
. . . . . . . . . 10
|
| 5 | 4 | con2d 129 |
. . . . . . . . 9
|
| 6 | 5 | impr 649 |
. . . . . . . 8
|
| 7 | biorf 420 |
. . . . . . . 8
| |
| 8 | 6, 7 | syl 17 |
. . . . . . 7
|
| 9 | 8 | bicomd 213 |
. . . . . 6
|
| 10 | 9 | 2ralbidva 2988 |
. . . . 5
|
| 11 | 10 | anbi2d 740 |
. . . 4
|
| 12 | ralunb 3794 |
. . . . . 6
| |
| 13 | 12 | ralbii 2980 |
. . . . 5
|
| 14 | nfv 1843 |
. . . . . 6
| |
| 15 | nfcv 2764 |
. . . . . . 7
| |
| 16 | nfv 1843 |
. . . . . . . 8
| |
| 17 | nfcsb1v 3549 |
. . . . . . . . . 10
| |
| 18 | nfcsb1v 3549 |
. . . . . . . . . 10
| |
| 19 | 17, 18 | nfin 3820 |
. . . . . . . . 9
|
| 20 | 19 | nfeq1 2778 |
. . . . . . . 8
|
| 21 | 16, 20 | nfor 1834 |
. . . . . . 7
|
| 22 | 15, 21 | nfral 2945 |
. . . . . 6
|
| 23 | equequ2 1953 |
. . . . . . . . 9
| |
| 24 | nfcv 2764 |
. . . . . . . . . . . 12
| |
| 25 | nfcv 2764 |
. . . . . . . . . . . 12
| |
| 26 | disjxun.1 |
. . . . . . . . . . . 12
| |
| 27 | 24, 25, 26 | csbhypf 3552 |
. . . . . . . . . . 11
|
| 28 | 27 | ineq2d 3814 |
. . . . . . . . . 10
|
| 29 | 28 | eqeq1d 2624 |
. . . . . . . . 9
|
| 30 | 23, 29 | orbi12d 746 |
. . . . . . . 8
|
| 31 | 30 | cbvralv 3171 |
. . . . . . 7
|
| 32 | equequ1 1952 |
. . . . . . . . 9
| |
| 33 | csbeq1a 3542 |
. . . . . . . . . . 11
| |
| 34 | 33 | ineq1d 3813 |
. . . . . . . . . 10
|
| 35 | 34 | eqeq1d 2624 |
. . . . . . . . 9
|
| 36 | 32, 35 | orbi12d 746 |
. . . . . . . 8
|
| 37 | 36 | ralbidv 2986 |
. . . . . . 7
|
| 38 | 31, 37 | syl5bbr 274 |
. . . . . 6
|
| 39 | 14, 22, 38 | cbvral 3167 |
. . . . 5
|
| 40 | r19.26 3064 |
. . . . 5
| |
| 41 | 13, 39, 40 | 3bitr3i 290 |
. . . 4
|
| 42 | 26 | disjor 4634 |
. . . . 5
|
| 43 | 42 | anbi1i 731 |
. . . 4
|
| 44 | 11, 41, 43 | 3bitr4g 303 |
. . 3
|
| 45 | nfv 1843 |
. . . . . . . . . 10
| |
| 46 | equequ2 1953 |
. . . . . . . . . . 11
| |
| 47 | csbeq1a 3542 |
. . . . . . . . . . . . 13
| |
| 48 | 47 | ineq2d 3814 |
. . . . . . . . . . . 12
|
| 49 | 48 | eqeq1d 2624 |
. . . . . . . . . . 11
|
| 50 | 46, 49 | orbi12d 746 |
. . . . . . . . . 10
|
| 51 | 45, 21, 50 | cbvral 3167 |
. . . . . . . . 9
|
| 52 | equequ1 1952 |
. . . . . . . . . . . 12
| |
| 53 | equcom 1945 |
. . . . . . . . . . . 12
| |
| 54 | 52, 53 | syl6bb 276 |
. . . . . . . . . . 11
|
| 55 | 24, 25, 26 | csbhypf 3552 |
. . . . . . . . . . . . . 14
|
| 56 | 55 | ineq1d 3813 |
. . . . . . . . . . . . 13
|
| 57 | incom 3805 |
. . . . . . . . . . . . 13
| |
| 58 | 56, 57 | syl6eq 2672 |
. . . . . . . . . . . 12
|
| 59 | 58 | eqeq1d 2624 |
. . . . . . . . . . 11
|
| 60 | 54, 59 | orbi12d 746 |
. . . . . . . . . 10
|
| 61 | 60 | ralbidv 2986 |
. . . . . . . . 9
|
| 62 | 51, 61 | syl5bbr 274 |
. . . . . . . 8
|
| 63 | 62 | cbvralv 3171 |
. . . . . . 7
|
| 64 | ralcom 3098 |
. . . . . . 7
| |
| 65 | 63, 64 | bitri 264 |
. . . . . 6
|
| 66 | 65, 10 | syl5bb 272 |
. . . . 5
|
| 67 | 66 | anbi1d 741 |
. . . 4
|
| 68 | ralunb 3794 |
. . . . . 6
| |
| 69 | 68 | ralbii 2980 |
. . . . 5
|
| 70 | r19.26 3064 |
. . . . 5
| |
| 71 | 69, 70 | bitri 264 |
. . . 4
|
| 72 | disjors 4635 |
. . . . 5
| |
| 73 | 72 | anbi2ci 732 |
. . . 4
|
| 74 | 67, 71, 73 | 3bitr4g 303 |
. . 3
|
| 75 | 44, 74 | anbi12d 747 |
. 2
|
| 76 | disjors 4635 |
. . 3
| |
| 77 | ralunb 3794 |
. . 3
| |
| 78 | 76, 77 | bitri 264 |
. 2
|
| 79 | df-3an 1039 |
. . 3
| |
| 80 | anandir 872 |
. . 3
| |
| 81 | 79, 80 | bitri 264 |
. 2
|
| 82 | 75, 78, 81 | 3bitr4g 303 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-nul 3916 df-disj 4621 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |