MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjtpsn Structured version   Visualization version   Unicode version

Theorem disjtpsn 4251
Description: The disjoint intersection of an unordered triple and a singleton. (Contributed by AV, 14-Nov-2021.)
Assertion
Ref Expression
disjtpsn  |-  ( ( A  =/=  D  /\  B  =/=  D  /\  C  =/=  D )  ->  ( { A ,  B ,  C }  i^i  { D } )  =  (/) )

Proof of Theorem disjtpsn
StepHypRef Expression
1 df-tp 4182 . . 3  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
21ineq1i 3810 . 2  |-  ( { A ,  B ,  C }  i^i  { D } )  =  ( ( { A ,  B }  u.  { C } )  i^i  { D } )
3 disjprsn 4250 . . . . 5  |-  ( ( A  =/=  D  /\  B  =/=  D )  -> 
( { A ,  B }  i^i  { D } )  =  (/) )
433adant3 1081 . . . 4  |-  ( ( A  =/=  D  /\  B  =/=  D  /\  C  =/=  D )  ->  ( { A ,  B }  i^i  { D } )  =  (/) )
5 disjsn2 4247 . . . . 5  |-  ( C  =/=  D  ->  ( { C }  i^i  { D } )  =  (/) )
653ad2ant3 1084 . . . 4  |-  ( ( A  =/=  D  /\  B  =/=  D  /\  C  =/=  D )  ->  ( { C }  i^i  { D } )  =  (/) )
74, 6jca 554 . . 3  |-  ( ( A  =/=  D  /\  B  =/=  D  /\  C  =/=  D )  ->  (
( { A ,  B }  i^i  { D } )  =  (/)  /\  ( { C }  i^i  { D } )  =  (/) ) )
8 undisj1 4029 . . 3  |-  ( ( ( { A ,  B }  i^i  { D } )  =  (/)  /\  ( { C }  i^i  { D } )  =  (/) )  <->  ( ( { A ,  B }  u.  { C } )  i^i  { D }
)  =  (/) )
97, 8sylib 208 . 2  |-  ( ( A  =/=  D  /\  B  =/=  D  /\  C  =/=  D )  ->  (
( { A ,  B }  u.  { C } )  i^i  { D } )  =  (/) )
102, 9syl5eq 2668 1  |-  ( ( A  =/=  D  /\  B  =/=  D  /\  C  =/=  D )  ->  ( { A ,  B ,  C }  i^i  { D } )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    =/= wne 2794    u. cun 3572    i^i cin 3573   (/)c0 3915   {csn 4177   {cpr 4179   {ctp 4181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-pr 4180  df-tp 4182
This theorem is referenced by:  disjtp2  4252  cnfldfun  19758
  Copyright terms: Public domain W3C validator